Optics and Precision Engineering, Volume. 32, Issue 2, 268(2024)
Design of lightweight re-parameterized remote sensing image super-resolution network
[1] [1] 刘雪岩, 许聿达, 雷建昕, 等. 基于视差放大与超分辨率的三维光场腹腔镜标定[J]. 光学 精密工程, 2022, 30(5): 510-517. doi: 10.37188/OPE.2021.0332LIUX Y, XUY D, LEIJ X, et al. Three-dimensional light field endoscope calibration based on light field disparity amplifier and super-resolution network[J]. Opt. Precision Eng., 2022, 30(5): 510-517.(in Chinese). doi: 10.37188/OPE.2021.0332
[2] RASTI P, UIBOUPIN T, ESCALERA S et al. Convolutional neural network super resolution for face recognition in surveillance monitoring[C], 175-184(2016).
[3] [3] 王延文, 雷为民, 张伟, 等. 基于生成模型的视频图像重建方法综述[J]. 通信学报, 2022, 43(9): 194-208. doi: 10.11959/j.issn.1000-436x.2022178WANGY W, LEIW M, ZHANGW, et al. Survey on video image reconstruction method based on generative model[J]. Journal on Communications, 2022, 43(9): 194-208.(in Chinese). doi: 10.11959/j.issn.1000-436x.2022178
[4] ZENG H, CAI J R, LI L D et al. Learning image-adaptive 3D lookup tables for high performance photo enhancement in real-time[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 2058-2073(2022).
[5] [5] 耿铭昆, 吴凡路, 王栋. 轻量化火星遥感影像超分辨率重建网络[J]. 光学 精密工程, 2022, 30(12): 1487-1498. doi: 10.37188/OPE.20223012.1487GENGM K, WUF L, WANGD. Lightweight Mars remote sensing image super-resolution reconstruction network[J]. Opt. Precision Eng., 2022, 30(12): 1487-1498.(in Chinese). doi: 10.37188/OPE.20223012.1487
[6] [6] 王娟, 刘子杉, 武明虎, 等. 融合超分辨率重建技术的多尺度目标检测算法[J]. 西安电子科技大学学报, 2023, 50(3): 122-131.WANGJ, LIUZ S, WUM H, et al. Multi-scale object detection algorithm combined with super-resolution reconstruction technology[J]. Journal of Xidian University, 2023, 50(3): 122-131.(in Chinese)
[7] CHENG G, HAN J W, LU X Q. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 105, 1865-1883(2017).
[8] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29, 1153-1160(1981).
[9] [9] 潘璐璐, 延伟东, 郑红婵. 基于多尺度局部自相似性和邻域嵌入的超分辨率算法研究[J]. 西北工业大学学报, 2015, 33(6): 1014-1019. doi: 10.3969/j.issn.1000-2758.2015.06.026PANL L, YANW D, ZHENGH C. Super resolution based on multi-scale local self-similarity and neighbor embedding[J]. Journal of Northwestern Polytechnical University, 2015, 33(6): 1014-1019.(in Chinese). doi: 10.3969/j.issn.1000-2758.2015.06.026
[10] [10] 朱福珍, 刘越, 黄鑫, 等. 改进的稀疏表示遥感图像超分辨重建[J]. 光学 精密工程, 2019, 27(3): 718-725. doi: 10.13482/j.issn1001-7011.2019.05.004ZHUF Z, LIUY, HUANGX, et al. Remote sensing image super-resolution based on improved sparse representation[J]. Opt. Precision Eng., 2019, 27(3): 718-725.(in Chinese). doi: 10.13482/j.issn1001-7011.2019.05.004
[11] TIMOFTE R, DE SMET V, VAN GOOL L.
[12] DONG C, LOY C C, HE K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).
[13] [13] 蔡体健, 彭潇雨, 石亚鹏, 等. 通道注意力与残差级联的图像超分辨率重建[J]. 光学 精密工程, 2021, 29(1): 142-151. doi: 10.37188/OPE.20212901.0142CAIT J, PENGX Y, SHIY P, et al. Channel attention and residual concatenation network for image super-resolution[J]. Opt. Precision Eng., 2021, 29(1): 142-151.(in Chinese). doi: 10.37188/OPE.20212901.0142
[14] [14] 程德强, 赵佳敏, 寇旗旗, 等. 多尺度密集特征融合的图像超分辨率重建[J]. 光学 精密工程, 2022, 30(20): 2489-2500. doi: 10.37188/OPE.20223020.2489CHENGD Q, ZHAOJ M, KOUQ Q, et al. Multi-scale dense feature fusion network for image super-resolution[J]. Opt. Precision Eng., 2022, 30(20): 2489-2500.(in Chinese). doi: 10.37188/OPE.20223020.2489
[15] HAUT J M, PAOLETTI M E, FERNANDEZ-BELTRAN R et al. Remote sensing single-image superresolution based on a deep compendium model[J]. IEEE Geoscience and Remote Sensing Letters, 16, 1432-1436(2019).
[16] PAN Z X, MA W, GUO J Y et al. Super-resolution of single remote sensing image based on residual dense backprojection networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 7918-7933(2019).
[17] DONG X Y, SUN X, JIA X P et al. Remote sensing image super-resolution using novel dense-sampling networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 1618-1633(2021).
[18] LEI S, SHI ZH W. Hybrid-Scale Self-Similarity Exploitation for Remote Sensing Image Super-Resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-10(2022).
[19] ARORA S, COHEN N, HAZAN E. On the optimization of deep networks: implicit acceleration by overparameterization[C], 244-253(2018).
[20] DING X H, GUO Y C, DING G G et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C], 1911-1920(2019).
[21] DING X H, ZHANG X Y, MA N N et al. RepVGG: making vgg-style convnets great again[C], 13728-13737(2021).
[22] ZHANG X D, ZENG H, ZHANG L. Edge-oriented convolution block for real-time super resolution on mobile devices[C], 4034-4043(2021).
[23] ZHANG T L, BIAN C J, ZHANG X M et al. Lightweight remote-sensing image super-resolution via re-parameterized feature distillation network[J]. IEEE Geoscience and Remote Sensing Letters, 20, 6003905(2023).
[24] WANG X L, GIRSHICK R, GUPTA A et al. Non-local neural networks[C], 7794-7803(2018).
[25] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C], 7132-7141(2018).
[26] CAO Y, XU J R, LIN S et al. GCNet: Non-local networks meet squeeze-excitation networks and beyond[C], 1971-1980(2019).
[27] LIU H J, LIU F Q, FAN X Y et al. Polarized self-attention: towards high-quality pixel-wise mapping[J]. Neurocomputing, 506, 158-167(2022).
[28] ZHU L, WANG X J, KE Z H et al. BiFormer: vision transformer with bi-level routing attention[C], 10323-10333(2023).
[29] SHI W Z, CABALLERO J, HUSZÁR F et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C], 1874-1883(2016).
[30] KONG F Y, LI M X, LIU S W et al. Residual local feature network for efficient super-resolution[C], 765-775(2022).
[31] LIU J, ZHANG W J, TANG Y T et al. Residual feature aggregation network for image super-resolution[C], 2356-2365(2020).
[32] YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C], 270-279(2010).
[33] YANG J C, WRIGHT J, HUANG T S et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 19, 2861-2873(2010).
[34] DONG C, LOY C C, TANG X O.
[35] LEI S, SHI Z W, ZOU Z X. Super-resolution for remote sensing images via local-global combined network[J]. IEEE Geoscience and Remote Sensing Letters, 14, 1243-1247(2017).
[36] WANG SH ZH, ZHOU T F, LU Y et al. Contextual Transformation Network for Lightweight Remote-Sensing Image Super Resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-13(2022).
[37] KANG B, SOHN K A.
[38] HUI Z, GAO X B, YANG Y C et al. Lightweight image super-resolution with information multi-distillation network[C], 2024-2032(2019).
[39] LIU J, TANG J, WU G S.
[40] WANG Q J, WANG S, CHEN M F et al. DARN: Distance Attention Residual Network for Lightweight Remote-Sensing Image Super resolution[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 714-724(2023).
[41] DABOV K, KATKOVNIK V et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 16, 2080-2095(2007).
[42] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 54, 4311-4322(2006).
[43] ZORAN D, WEISS Y. From learning models of natural image patches to whole image restoration[C], 479-486(2011).
[44] GUO S, YAN Z F, ZHANG K et al. Toward convolutional blind denoising of real photographs[C], 1712-1722(2019).
[45] ANWAR S, BARNES N. Real image denoising with feature attention[C], 3155-3164(2019).
Get Citation
Copy Citation Text
Jianbing YI, Junkuan CHEN, Feng CAO, Jun LI, Weijia XIE. Design of lightweight re-parameterized remote sensing image super-resolution network[J]. Optics and Precision Engineering, 2024, 32(2): 268
Category:
Received: Jul. 5, 2023
Accepted: --
Published Online: Apr. 2, 2024
The Author Email: Jianbing YI (yijianbing8@jxust.edu.cn)