Chinese Journal of Lasers, Volume. 50, Issue 18, 1813003(2023)

A Review of High-Capacity Hologram Data Storage for Big Data Applications

Dejiao Hu1,2、**, Zhen Wang2, Tiewei Luo2, Qifan Xia1, Diqin Zhang3, Yuxia Zhao3, Mu Zheng2, Xiangping Li1, and Yaoyu Cao、*
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, Guangdong, China
  • 2Amethystum Storage Technology Co., Ltd., Meizhou 514000, Guangdong, China
  • 3Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing 100190, China
  • show less
    References(88)

    [4] Su W J, Hu Q, Zhao M et al. Development status and prospect of optical storage technology[J]. Opto-Electronic Engineering, 46, 4-10(2019).

    [7] Hesselink L, Orlov S S, Bashaw M C. Holographic data storage systems[J]. Proceedings of the IEEE, 92, 1231-1280(2004).

    [8] Lisa D, Adrian H, Kevin C et al[M]. Holographic data storage: from theory to practical systems(2010).

    [9] Ushiyama Z, Kurata H, Tsukamoto Y et al. Shift-peristrophic multiplexing for high density holographic data storage[J]. Applied Sciences, 4, 148-157(2014).

    [10] Li J H, Liu J P, Lin X et al. Volume holographic data storage[J]. Chinese Journal of Lasers, 44, 1000001(2017).

    [11] Jian J L, Cao L, Wei X Q et al. A review of photopolymers on holography volume data storage[J]. Opto-Electronic Engineering, 46, 45-56(2019).

    [12] Lin X, Hao J Y, Zheng M J et al. Optical holographic data storage—the time for new development[J]. Opto-Electronic Engineering, 46, 11-25(2019).

    [13] Takasaki K, Hirooka K, Takeda T et al. High-speed data recording and retrieving using the image-stabilizing technique in a coaxial holographic disk system[C], WDPDP2(2007).

    [14] Klein W R, Cook B D. Unified approach to ultrasonic light diffraction[J]. IEEE Transactions on Sonics and Ultrasonics, 14, 123-134(1967).

    [15] Moharam M G, Young L. Criterion for Bragg and Raman-Nath diffraction regimes[J]. Applied Optics, 17, 1757-1759(1978).

    [16] Kogelnik H. Coupled wave theory for thick hologram gratings[J]. Bell System Technical Journal, 48, 2909-2947(1969).

    [17] Burr G W, Psaltis D. Effect of the oxidation state of LiNbO3∶Fe on the diffraction efficiency of multiple holograms[J]. Optics Letters, 21, 893-895(1996).

    [18] Tan X D, Hideyoshi H. Collinear holographic information storage technologies and system[J]. Acta Optica Sinica, 26, 827-830(2006).

    [19] Fukumoto A. Coaxial holographic data recording[J]. Optics and Photonics News, 19, 28-33(2008).

    [20] Lin X A, Liu J P, Hao J Y et al. Collinear holographic data storage technologies[J]. Opto-Electronic Advances, 3, 190004(2020).

    [21] Tanaka K, Mori H, Hara M et al. High density recording of 270 Gbit/in.2 in a coaxial holographic recording system[J]. Japanese Journal of Applied Physics, 47, 5891-5894(2008).

    [22] Liu J P, Horimai H, Lin X A et al. Phase modulated high density collinear holographic data storage system with phase-retrieval reference beam locking and orthogonal reference encoding[J]. Optics Express, 26, 3828-3838(2018).

    [23] Zheng M, Luo T W, Tian J et al. Holographic multiplexing recording method for increasing storage capacity[P].

    [24] Pramitha V, Joseph R, Sreekumar K et al. Peristrophic multiplexing studies in silver doped photopolymer film[J]. Journal of Modern Optics, 57, 908-913(2010).

    [25] Zheng M, Luo T W, Tian J et al. Holographic data storage device with single-arm structure[P].

    [26] Steckman G J, Solomatine I, Zhou G et al. Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory[J]. Optics Letters, 23, 1310-1312(1998).

    [27] Trentler T J, Boyd J E, Colvin V L. Epoxy resin-photopolymer composites for volume holography[J]. Chemistry of Materials, 12, 1431-1438(2000).

    [28] Waldman D A, Butler C J, Raguin D H. CROP holographic storage media for optical data storage greater than 100 bits/μm2[J]. Proceedings of SPIE, 5216, 10-25(2003).

    [29] Khan A, Daugaard A E, Bayles A et al. Dendronized macromonomers for three-dimensional data storage[J]. Chemical Communications, 425-427(2009).

    [30] Choi K, Chon J W M, Gu M et al. Low-distortion holographic data storage media using free-radical ring-opening polymerization[J]. Advanced Functional Materials, 19, 3560-3566(2009).

    [31] Hata E, Mitsube K, Momose K et al. Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization[J]. Optical Materials Express, 1, 207-222(2011).

    [33] Yu D, Liu H P, Wang J et al. Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer[J]. Optics Communications, 284, 2784-2788(2011).

    [34] Xue X Y, Hai F S, Gao L Z et al. Effect of nanoparticle diameter on the holographic properties of gold nanoparticle dispersed acrylate photopolymer films[J]. Optik, 124, 6987-6990(2013).

    [35] Peng H Y, Wang C, Xi W X et al. Facile image patterning via sequential thiol-Michael/thiol-yne click reactions[J]. Chemistry of Materials, 26, 6819-6826(2014).

    [36] Ayres M R, Anderson K, Askham F et al. Holographic data storage at 2+ Tbit/in2[J]. Proceedings of SPIE, 9386, 93860G(2015).

    [37] Ni M L, Peng H Y, Liao Y G et al. 3D image storage in photopolymer/ZnS nanocomposites tailored by “photoinitibitor”[J]. Macromolecules, 48, 2958-2966(2015).

    [38] Takanori S. Composition for hologram recording medium, and hologram recording medium[P].

    [39] Li J H, Hu P, Jin J C et al. Highly sensitive photopolymer for holographic data storage[J]. Optics Express, 30, 40599-40610(2022).

    [40] Dhar L, Hale A, Katz H E et al. Recording media that exhibit high dynamic range for digital holographic data storage[J]. Optics Letters, 24, 487-489(1999).

    [41] Schilling M L, Colvin V L, Dhar L et al. Acrylate oligomer-based photopolymers for optical storage applications[J]. Chemistry of Materials, 11, 247-254(1999).

    [42] Askham F, Ayres M R, Urness A C. High dynamic range holographic data storage media[J]. Proceedings of SPIE, 9587, 9587(2015).

    [43] Tomita Y, Suzuki N, Chikama K. Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers[J]. Optics Letters, 30, 839-841(2005).

    [44] Kojima T, Suzuki N, Tomita Y. Holographic grating formation in nanoparticle-dispersed photopolymer films[C], 37-38(2003).

    [45] Suzuki N, Tomita Y, Ohmori K et al. Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording[J]. Optics Express, 14, 12712-12719(2006).

    [46] Suzuki N, Tomita Y. Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films[J]. Applied Optics, 46, 6809-6814(2007).

    [47] Tomita Y, Nakamura T, Tago A. Improved thermal stability of volume holograms recorded in nanoparticle-polymer composite films[J]. Optics Letters, 33, 1750-1752(2008).

    [48] Liu X M, Tomita Y, Oshima J et al. Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%[J]. Applied Physics Letters, 95, 261109(2009).

    [49] Momose K, Takayama S, Hata E et al. Shift-multiplexed holographic digital data page storage in a nanoparticle-(thiol-ene) polymer composite film[J]. Optics Letters, 37, 2250-2252(2012).

    [50] Fujii R, Guo J X, Klepp J et al. Nanoparticle polymer composite volume gratings incorporating chain transfer agents for holography and slow-neutron optics[J]. Optics Letters, 39, 3453-3456(2014).

    [51] Mitsube K, Nishimura Y, Nagaya K et al. Holographic nanoparticle-polymer composites based on radical-mediated thiol-yne photopolymerizations: characterization and shift-multiplexed holographic digital data page storage[J]. Optical Materials Express, 4, 982-996(2014).

    [52] Zhao L, Wang L G, Hu B et al. Study of holographic characteristics of TiO2 nanoparticles dispersed resisting shrinkage photopolymer[J]. Acta Physica Sinica, 60, 044213(2011).

    [53] He F, Hai F S, Xue X Y et al. Holographic characteristics of organic-inorganic ZrO2 nano-composite photopolymer[J]. Journal of Optoelectronics·Laser, 23, 712-717(2012).

    [54] Zhao L, Han J H, Li R P et al. Resisting shrinkage properties of volume holograms recorded in TiO2 nanoparticle-dispersed acrylamide-based photopolymer[J]. Chinese Physics B, 22, 124207(2013).

    [55] Li C L, Li Y X, Xue X Y et al. Holographic properties of modified and unmodified Fe3O4-nanoparticle dispersed acrylate photopolymer[J]. Acta Photonica Sinica, 43, 0616006(2014).

    [56] Li W X, Li C L, Xue X Y et al. Study of holographic characteristics of photopolymers doped with different size Al2O3 nano-particles[J]. Journal of Optoelectronics·Laser, 25, 913-919(2014).

    [57] Nie H L, Li R P, Li H Z et al. Holographic properties of photopolymer doped PbSe/PVA quantum dots[J]. Acta Photonica Sinica, 44, 0409002(2015).

    [58] Li Y X, Wang C H, Li H L et al. Effect of incorporation of different modified Al2O3 nanoparticles on holographic characteristics of PVA/AA photopolymer composites[J]. Applied Optics, 54, 9799-802(2015).

    [59] Xue X Y. Study on holographic storage characteristics of photopolymer materials doped with gold nanoparticles[D](2013).

    [60] Zhao G H, Mouroulis P. Diffusion model of hologram formation in dry photopolymer materials[J]. Journal of Modern Optics, 41, 1929-1939(1994).

    [61] Piazzolla S, Jenkins B K. First-harmonic diffusion model for holographic grating formation in photopolymers[J]. Journal of the Optical Society of America B, 17, 1147-1157(2000).

    [62] Sheridan J T, Lawrence J R. Nonlocal-response diffusion model of holographic recording in photopolymer[J]. Journal of the Optical Society of America A, 17, 1108-1114(2000).

    [64] Gleeson M R, Liu S, McLeod R R et al. Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental validation[J]. Journal of the Optical Society of America B, 26, 1746-1754(2009).

    [65] Gleeson M R, Liu S, Guo J X et al. Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary radical generation and inhibition[J]. Journal of the Optical Society of America B, 27, 1804-1812(2010).

    [66] Guo J X, Gleeson M R, Liu S et al. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling[J]. Journal of Optics, 13, 095601(2011).

    [67] Guo J X, Gleeson M R, Liu S et al. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results[J]. Journal of Optics, 13, 095602(2011).

    [68] Xie X L, Peng H Y, Ni M L[M]. Holographic polymer material, 151-154(2020).

    [69] Wang Z, Zhang D Q, Zhao Y et al. Synthesis and properties of a novel photosensitizer for holographic storage[J]. Imaging Science and Photochemistry, 36, 211-218(2018).

    [70] Zhang D Q, Zhao Y, Zhang Z et al. Improving performance of two-stage photopolymers for volume holographic recording by fluorinated epoxy-amine cross-linked matrices[J]. Journal of Applied Polymer Science, 139, 52161(2022).

    [71] Tao S Q, Zhao Y X, Wan Y H et al. Dual-wavelength sensitized photopolymer for holographic data storage[J]. Japanese Journal of Applied Physics, 49, 08KD01(2010).

    [72] Wang Z. Preparation and properties of holographic storage materials based on photopolymerization[D], 34-40(2017).

    [73] Ishihara K, Fujiwara T, Esaki A. Evaluation of multilayered waveguide holographic memory media[J]. Japanese Journal of Applied Physics, 43, 4915(2004).

    [74] Khan A, Stucky G D, Hawker C J. High-performance, nondiffusive crosslinked polymers for holographic data storage[J]. Advanced Materials, 20, 3937-3941(2008).

    [75] Asato T, Takanori S. Composition for holographic recording medium, cured product for holographic recording medium, and holographic recording medium[P].

    [76] Yasuaki M, Yasuhiro K, Junji M. Composition for forming hologram recording layer, and hologram recording material and hologram optical recording medium using the same[P].

    [77] Peng H Y, Bi S G, Ni M L et al. Monochromatic visible light “photoinitibitor”: Janus-faced initiation and inhibition for storage of colored 3D images[J]. Journal of the American Chemical Society, 136, 8855-8858(2014).

    [78] Chen Y X, Hu P, Huang Z Y et al. Significant enhancement of the polarization holographic performance of photopolymeric materials by introducing graphene oxide[J]. ACS Applied Materials & Interfaces, 13, 27500-27512(2021).

    [79] Li J H, Hu P, Zeng Z Y et al. Phenanthraquinone-doped polymethyl methacrylate photopolymer for holographic recording[J]. Molecules, 27, 6283(2022).

    [80] Hu P, Li J H, Jin J C et al. Highly sensitive photopolymer for holographic data storage containing methacryl polyhedral oligomeric silsesquioxane[J]. ACS Applied Materials & Interfaces, 14, 21544-21554(2022).

    [81] Hu P, Chen Y X, Li J H et al. Impact of fullerene on the holographic properties of PQ/PMMA photopolymer[J]. Composites Science and Technology, 221, 109335(2022).

    [82] Jurbergs D, Bruder F K, Deuber F et al. New recording materials for the holographic industry[J]. Proceedings of SPIE, 7233, 72330K(2009).

    [83] Berneth H, Bruder F K, Fäcke T et al. Holographic recording aspects of high-resolution Bayfol HX photopolymer[J]. Proceedings of SPIE, 7957, 79570H(2011).

    [84] Berneth H, Bruder F K, Fäcke T et al. Bayfol HX photopolymer for full-color transmission volume Bragg gratings[J]. Proceedings of SPIE, 9006, 900602(2014).

    [85] Bruder F K, Fäcke T, Hagen R et al. Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film[J]. Proceedings of SPIE, 9626, 96260T(2015).

    [86] Riva G, Zanutta A, Bruder F K et al. Tuning the Δn and scattering in Bayfol® HX based holograms[J]. Optical Materials, 109, 110362(2020).

    [87] Peng H Y, Nair D P, Kowalski B A et al. High performance graded rainbow holograms via two-stage sequential orthogonal thiol-click chemistry[J]. Macromolecules, 47, 2306-2315(2014).

    [88] Dušek K. Cross-linking of epoxy resins[M]. Advances in chemistry, 3-14(1984).

    [89] Zhuo D H, Tao S Q, Shi M Q et al. Shrinkage of photopolymer for holographic recording materials[J]. Chinese Journal of Lasers, 34, 1543-1547(2007).

    [90] Shi M Q, Wu F P, Li M Z et al. Photopolymer holographic memory materials comprising high refractive index epoxy and low refractive index olefine monomer and manufacturing method thereof[P].

    [91] Zhao Y X, Wu F P, Shi M Q. Method for preparing photopolymer holographic storage optical disk[P].

    [92] Schnoes M, Ihas B, Hill A et al. Holographic data storage media for practical systems[J]. Proceedings of SPIE, 5005, 29-37(2003).

    [93] Dhar L. High performance recording media for holographic data storage[C], 727-728(2004).

    Tools

    Get Citation

    Copy Citation Text

    Dejiao Hu, Zhen Wang, Tiewei Luo, Qifan Xia, Diqin Zhang, Yuxia Zhao, Mu Zheng, Xiangping Li, Yaoyu Cao. A Review of High-Capacity Hologram Data Storage for Big Data Applications[J]. Chinese Journal of Lasers, 2023, 50(18): 1813003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: micro and nano optics

    Received: May. 29, 2023

    Accepted: Jul. 14, 2023

    Published Online: Sep. 12, 2023

    The Author Email: Hu Dejiao (hudejiao@amethystum.com), Cao Yaoyu (yaoyucao@jnu.edu.cn)

    DOI:10.3788/CJL230870

    Topics