Chinese Journal of Lasers, Volume. 36, Issue 10, 2548(2009)

Iterative Regularization Denoising Method Based on OSV Model for Medical Image Denoising

Chen Guannan1,2、*, Chen Rong1, Lin Juqiang1, Huang Zufang1, Feng Shangyuan1, Li Yongzeng1, and Yang Kuntao2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(15)

    [1] [1] T. F. Chan,J. Shen,L. Vese. Variational PDE models in image processing[J]. Notices Amer. Math. Soc.,2003,50(1):14-26

    [2] [2] D. Strong,T. F. Chan. Edge preserving and scale dependent properties of total variation regularization[C]. Inv. Probl.,2003,19(6):s165-s187

    [4] [4] G. Gilboa,N. Sochen,Y. Y. Zeevi. Variational denoising of partly-textured images by spatially varying constraints[J]. IEEE Transactions on Image Processing,2006,15(8):2281-2289

    [7] [7] Y. Meyer. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations[M]. University Lecture Scries. Boston,USA:American Mathematical Society,2001.11-34

    [8] [8] L. A. Vese,S. J. Osher. Modeling textures with total variation minimization and oscillating patterns in image processing[J]. J. Scientific Computing,2003,19(11):553-572

    [9] [9] S. Osher,A. Sole,L. Vese. Image decomposition and restoration using total variation minimization and the H-norm[J]. J. Multiscale Modeling and Simulation,2003,1(3):349-370

    [11] [11] E. Tadmor,S. Nezzar,L. Vese. Multiscale hierarchical decomposition of images with applications to deblurring,denoising and segmentation[J]. Communications in Math. Sciences,2008,6(2):281-307

    [12] [12] T. Le,L. Vese. Image decomposition using the total variation and div(BMO)[J]. J. Multiscale Modeling and Simulation,2005,4(2):390-423

    [13] [13] J. F. Aujol,G. Aubert,L. Blanc-Feraud et al.. Image decomposition into a bounded variation component and an oscillating component[J]. J. Math. Imag. Vis.,2005,22(1):71-88

    [14] [14] Chen Yunmei,S. Levine,M. Rat. Variable exponent,linear growth functionals in image processing[J]. SIAM Journal on Applied Mathematics,2006,66(4):1383-1406

    [15] [15] J. F. Aujol,A. Chambolle. Dual norms and image decomposition models[J]. International J. Computer Vision,2005,63(1):85-104

    CLP Journals

    [1] Zhang Baohua, Liu He. Infrared Image Denoising Algorithm Based on Sub-Band Component Threshold Estimation[J]. Chinese Journal of Lasers, 2014, 41(8): 809002

    Tools

    Get Citation

    Copy Citation Text

    Chen Guannan, Chen Rong, Lin Juqiang, Huang Zufang, Feng Shangyuan, Li Yongzeng, Yang Kuntao. Iterative Regularization Denoising Method Based on OSV Model for Medical Image Denoising[J]. Chinese Journal of Lasers, 2009, 36(10): 2548

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 22, 2009

    Accepted: --

    Published Online: Oct. 23, 2009

    The Author Email: Chen Guannan (edado@163.com)

    DOI:10.3788/cjl20093610.2548

    Topics