Journal of Quantum Optics, Volume. 25, Issue 3, 259(2019)

Telecloning of Probabilistic Quantum Cloning of Two States

ZHANG Shi-jun1 and ZHANG Wen-hai2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(16)

    [1] [1] Wootters W K,Zurek W H.A Single Quantum Cannot be Cloned[J].Natural (London), 1982,299: 802-803.DOI: https: ∥doi.org/10.1038/299802a0.

    [2] [2] Gisin N,Ribordy G,Tittel W,et al.Quantum Cryptography[J].Rev Mod Phys, 2002,74: 145.DOI: https: ∥doi.org/10.1103/RevModPhys.74.145.

    [3] [3] Buek V,Hillery M.Quantum Copying: Beyond the Nocloning Theorem[J].Phys Rev A,1996,54: 1844.DOI: https: ∥doi.org/10.1103/PhysRevA.54.1844.

    [4] [4] Duan L M,Guo G C.Probabilistic Cloning and Identification of Linearly Independent Quantum States[J].Phys Rev Lett,1998,80: 4999.DOI: https: ∥doi.org/10.1103/PhysRevLett.80.4999.

    [5] [5] Nie Min,LEI Peng,YANG Guang,et al.Research on Quantum Wireless Multi-hop Network Routing Protocol Based on Maximum Weights Entanglement Distribution [J].Journal of Quantum Optics,2019,25(01): 22-35.(in Chinese).DOI: 10.3788/JQO20192501.0302.

    [6] [6] XUE Zhe,GUO Da-bo,MA Shi-tu.Multidimensional Data Reconciliation for Continuous-variable Quantum Key Distribution based on PEG Algorithm[J].Journal of Quantum Optics,2019,25(02): 145-151.(in Chinese).DOI: 10.3788/JQO20192502.0301.

    [7] [7] Bennett C H,Brassard G,Crepeau C,et al.Teleporting an Unknown Quantum State Via Dual Classical and Einstein-Podolsky Rosen Channels[J].Phys Rev Lett,1993,70: 1895.DOI: https: ∥doi.org/10.1103/PhysRevLett.70.1895.

    [8] [8] Murao M,Jonathan D,Plenio M B,et al.Quantum Telecloning and Multiparticle Entanglement[J].Phys Rev A,1999,59: 156.DOI: https: ∥doi.org/10.1103/PhysRevA.59.156.

    [9] [9] Ghiu I.Asymmetric Quantum Telecloning of d-level Systems and Broadcasting of Entanglement to Different Locations using the “Many-to-Many” Communication protocol[J].Phys Rev A,2003,67: 012323.DOI: https: ∥doi.org/10.1103/PhysRevA.67.012323.

    [10] [10] Filip R.Quantum Partial Teleportation as Optimal Cloning at a Distance[J].Phys Rev A,2004,69: 052301.DOI: https: ∥doi.org/10.1103/PhysRevA.69.052301.

    [11] [11] Wang X W,Yang G J.Hybrid Economical Telecloning of Equatorial Qubits and Generation of Multipartite Entanglement[J].Phys Rev A,2009,79: 062315.DOI: https: ∥doi.org/10.1103/PhysRevA.79.062315.

    [12] [12] Wang X W,Yang G J.Probabilistic Ancilla-free Phase-covariant Telecloning of Qudits with the Optimal Fidelity[J].Phys Rev A,2009,79: 064306.DOI: https: ∥doi.org/10.1103/PhysRevA.79.064306.

    [13] [13] Bennett C H.Quantum Cryptography Using Two Nonorthogonal States[J].Phys Rev Lett,1992,68: 3121.DOI: https: ∥doi.org/10.1103/PhysRevLett.68.3121.

    [14] [14] Yerokhin V,Shehu A,Feldman E,et al.Probabilistically Perfect Cloning of Two Pure States: Geometric Approach[J].Phys Rev Lett,2016,116: 200401.DOI: https: ∥doi.org/10.1103/PhysRevLett.116.200401.

    [15] [15] Bru D,DiVincenzo D P,Ekert A,et al.Optimal Universal and State-dependent Quantum Cloning[J].Phys Rev A,1998,57: 2368.DOI: https: ∥doi.org/10.1103/PhysRevA.57.2368.

    [16] [16] Zhang W H,Yu L B,Cao Z L,et al.Optimal Cloning of Two Known Nonorthogonal Quantum States[J].Phys Rev A,2012,86: 022322.DOI: https: ∥doi.org/10.1103/PhysRevA.86.022322.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Shi-jun, ZHANG Wen-hai. Telecloning of Probabilistic Quantum Cloning of Two States[J]. Journal of Quantum Optics, 2019, 25(3): 259

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 14, 2018

    Accepted: --

    Published Online: Sep. 27, 2019

    The Author Email: ZHANG Wen-hai (zhangwenhaianhui@aliyun.com)

    DOI:10.3788/jqo20192503.0103

    Topics