Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 9, 1216(2022)

Forestry pest detection optimization based on deep learning

Yan ZHAO, Ying-an LIU*, Qiao-lin YE, and Xiao-liang ZHOU
Author Affiliations
  • College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
  • show less
    Figures & Tables(17)
    Structure of Pest-YOLOv4
    Structure of CBAM
    Structure of ECA
    Structure of ECA-CBAM
    Structure of SPP
    Display of BJFU pest data set
    Clustering effects of K-means++ and K-means
    Loss curves
    mAP comparison of 5 models for forestry pest detection
    Samples of Leconte and Coleoptera
    Comparison of Pest-YOLOv4 and YOLOv4 on some test pictures
    • Table 1. Statistics of insects in the training set

      View table
      View in Article

      Table 1. Statistics of insects in the training set

      昆虫名样本数量
      红脂大小蠹(Leconte)2 216
      松十二齿小蠹(Boerner)1 595
      华山松大小蠹(Armandi)1 765
      四眼小蠹(Coleoptera)2 091
      六齿小蠹(Acuminatus)953
      云杉八齿小蠹(Linnaeus)1 727
    • Table 2. Experimental parameters setting

      View table
      View in Article

      Table 2. Experimental parameters setting

      参数
      批大小2
      训练次数250
      动量0.9
      前100个Epoch学习率0.01
      100 Epoch后学习率0.001
    • Table 3. Comparison of anchor box optimization

      View table
      View in Article

      Table 3. Comparison of anchor box optimization

      网络模型先验框聚类策略Precision/%Recall/%mAP/%
      YOLOv4K-means60.388.486.2
      YOLOv4K-means++60.688.986.7
    • Table 4. Comparison of five models for forestry pest detection

      View table
      View in Article

      Table 4. Comparison of five models for forestry pest detection

      网络模型

      Precision/

      %

      Recall/%FPS
      Faster R-CNN(ResNet101)63.092.44.6
      SSD57.283.929.3
      YOLOv358.485.734.5
      YOLOv460.388.439.2
      Pest-YOLOv467.592.833.4
    • Table 5. Detection results of Pest-YOLOv4 and YOLOv4

      View table
      View in Article

      Table 5. Detection results of Pest-YOLOv4 and YOLOv4

      昆虫名称YOLOv4Pest-YOLOv4
      Precision/%Recall/%AP/%Precision/%Recall/%AP/%
      Leconte71.594.095.481.995.396.2
      Boerner57.589.188.981.396.194.5
      Armandi65.986.284.868.693.487.6
      Coleoptera39.287.280.536.595.486.2
      Acuminatus52.582.979.851.294.987.8
      Linnaeus75.491.188.085.381.990.3
      均值60.388.486.267.592.890.4
    • Table 6. Detection effects of various improvement strategies

      View table
      View in Article

      Table 6. Detection effects of various improvement strategies

      网络模型改进策略Precision/%Recall/%mAP/%
      K-means++ECA-CBAMSPP-PANetFocal Loss
      YOLOv460.388.486.2
      YOLOv4-A58.892.688.5
      YOLOv4-B60.990.987.1
      YOLOv4-C61.691.788.3
      YOLOv4-D63.591.989.0
      Pest-YOLOv467.592.890.4
    Tools

    Get Citation

    Copy Citation Text

    Yan ZHAO, Ying-an LIU, Qiao-lin YE, Xiao-liang ZHOU. Forestry pest detection optimization based on deep learning[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(9): 1216

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 8, 2022

    Accepted: --

    Published Online: Sep. 14, 2022

    The Author Email: Ying-an LIU (lyastat@163.com)

    DOI:10.37188/CJLCD.2022-0077

    Topics