Chinese Journal of Ship Research, Volume. 16, Issue 4, 1(2021)

Advances in meta-heuristic methods for large-scale black-box optimization problems

Puyu JIANG1, Jun LIU1, Qi ZHOU2, and Yuansheng CHENG1
Author Affiliations
  • 1School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    References(141)

    [7] [7] HOLL J H. Adaptation in natural artificial systems: an introducty analysis with applications to biology, control, artificial intelligence[M]. Cambridge, MA: MIT Press, 1992.

    [9] [9] EBERHART R, KENNEDY J. A new optimizer using particle swarm they[C]MHS''95. Proceedings of the Sixth International Symposium on Micro Machine Human Science. Nagoya, Japan: IEEE, 1995: 39–43.

    [10] [10] RECHENBERG I. Evolutionsstrategien[M]SCHNEIDER B, RANFT U. Simulations method en in Der Medizin Und Biologie. Berlin, Heidelberg: Springer, 1978: 83–114.

    [11] [11] TANG K, LI X D, SUGANTHAN P N, et al. Benchmark functions f the CEC''2010 special session competition on largescale global optimization[EBOL]. (20100108)[20210329]Hefei, China: Nature Inspired Computation Applications Labaty, USTC, 2010. https:titan.csit.rmit.edu.au~e46507publicationslsgocec10.pdf.

    [13] [13] TAKAHAMA T, SAKAI S. Large scale optimization by differential evolution with lscape modality detection a diversity archive[C]2012 IEEE Congress on Evolutionary Computation. Brisbane, QLD, Australia: IEEE, 2012: 1–8.

    [14] [14] BREST J, ZAMUDA A, BOSKOVIC B, et al. Highdimensional realparameter optimization using selfadaptive differential evolution algithm with population size reduction[C]2008 IEEE Congress on Evolutionary Computation (IEEE Wld Congress on Computational Intelligence). Hong Kong, China: IEEE, 2008: 2032–2039.

    [16] [16] ZAMUDA A, BREST J, BOSKOVIC B, et al. Large scale global optimization using differential evolution with selfadaptation cooperative coevolution[C]2008 IEEE Congress on Evolutionary Computation (IEEE Wld Congress on Computational Intelligence). Hong Kong, China: IEEE, 2008: 3718–3725.

    [21] YOU X M. Differential evolution with a new mutation operator for solving high dimensional continuous optimization problems[J]. Journal of Computational Information Systems, 6, 3033-3039(2010).

    [22] [22] GOMEZ J, GARCIA A, SILVA C. COFRE: A fuzzy rule coevolutionary approach f multiclass classification problems[C]2005 IEEE Congress on Evolutionary Computation. Edinburgh, UK: IEEE, 2005: 1637–1644.

    [27] [27] BREST J, BOŠKOVIĆ B, ZAMUDA A, et al. Selfadaptive differential evolution algithm with a small varying population size[C]2012 IEEE Congress on Evolutionary Computation. Brisbane, QLD, Australia: IEEE, 2012, .

    [28] [28] HIBA H, IBRAHIM A, RAHNAMAYAN S. Largescale optimization using centerbased differential evolution with dynamic mutation scheme[C]2019 IEEE Congress on Evolutionary Computation (CEC). Wellington, New Zeal: IEEE, 2019: 3189–3196.

    [30] [30] HSIEH S T, SUN T Y, LIU C C, et al. Solving large scale global optimization using improved particle swarm optimizer[C]2008 IEEE Congress on Evolutionary Computation (IEEE Wld Congress on Computational Intelligence). Hong Kong, China: IEEE, 2008: 1777–1784.

    [40] [40] MOLINA D, LOZANO M, HERRERA F. MASWchains: Memetic algithm based on local search chains f large scale continuous global optimization[C]IEEE Congress on Evolutionary Computation. Barcelona, Spain: IEEE, 2010: 1–8.

    [42] [42] LATRE A, MUELAS S, PEÑA J M. Large scale global optimization: Experimental results with mosbased hybrid algithms[C]2013 IEEE Congress on Evolutionary Computation (CEC). Cancun, Mexico: IEEE, 2013: 2742–2749.

    [43] [43] BOLUFÉRÖHLER A, CHEN S. Extending minimum population search towards large scale global optimization[C]2014 IEEE Congress on Evolutionary Computation (CEC). Beijing, China: IEEE, 2014: 845–852.

    [44] [44] ROS R, HANSEN N. A simple modification in CMAES achieving linear time space complexity[C]Parallel Problem Solving from NaturePPSN X. Berlin, Heidelberg: Springer, 2008, 5199: 296.

    [46] [46] TSENG L Y, CHEN C. Multiple trajecty search f large scale global optimization[C]2008 IEEE Congress on Evolutionary Computation (IEEE Wld Congress on Computational Intelligence). Hong Kong, China: IEEE, 2008.

    [47] [47] WANG Y, LI B. A restart univariate estimation of distribution algithm: Sampling under mixed gaussian levy probability distribution[C]2008 IEEE Congress on Evolutionary Computation (IEEE Wld Congress on Computational Intelligence). Hong Kong, China: IEEE, 2008: 3917–3924.

    [48] BAŞ E, ÜLKER E. Improved social spider algorithm for large scale optimization[J]. Artificial Intelligence Review(2020).

    [50] [50] POTTER M A, DE JONG K A. A cooperative coevolutionary approach to function optimization[M]DAVID Y, SCHWEFEL H P, MÄNNER R. International Conference on Evolutionary Computation the Third Conference on Parallel Problem Solving from Nature. Jerusalem. Israel: Springer, 1994: 249–257.

    [52] [52] YANG Z Y, TANG K, YAO X. Multilevel cooperative coevolution f large scale optimization[C]2008 IEEE Congress on Evolutionary Computation (IEEE Wld Congress on Computational Intelligence). Hong Kong, China: IEEE, 2008.

    [53] [53] OVAR M N, LI X D, YANG Z Y, et al. Cooperative coevolution f large scale optimization through me frequent rom grouping[C]IEEE Congress on Evolutionary Computation (CEC). Barcelona, Spain: IEEE, 2010.

    [54] [54] LI X D, YAO X. Tackling high dimensional nonseparable optimization problems by cooperatively coevolving particle swarms[C]2009 IEEE Congress on Evolutionary Computation. Trondheim, Nway: IEEE, 2009.

    [55] [55] YANG Z Y, ZHANG J Q, TANG K, et al. An adaptive coevolutionary differential evolution algithm f largescale optimization[C]2009 IEEE Congress on Evolutionary Computation. Trondheim, Nway: IEEE, 2009.

    [57] [57] RAY T, YAO X. A cooperative coevolutionary algithm with crelation based adaptive variable partitioning[C]2009 IEEE Congress on Evolutionary Computation. Trondheim, Nway: IEEE, 2009.

    [58] [58] SINGH H K, RAY T. Divide conquer in coevolution: a difficult balancing act[M]AgentBased Evolutionary Search. Berlin, Heidelberg, Germany: Springer, 2010: 117–138.

    [59] [59] CHEN W X, WEISE T, YANG Z Y, et al. Largescale global optimization using cooperative coevolution with variable interaction learning[M]SCHAEFER R, COTTA C, KOŁODZIEJ J, et al. PPSN''10: Proceedings of the 11th International Conference on Parallel Problem Solving from Nature: Part II. Berlin, Heidelberg: Springer, 2010, 6239: 300–309.

    [60] [60] OVAR M N, LI X D, YAO X. Cooperative coevolution with delta grouping f large scale nonseparable function optimization[C]IEEE Congress on Evolutionary Computation (CEC). Barcelona, Spain: IEEE, 2010.

    [62] MEI Y, OMIDVAR M N, LI X D et al. A competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimization[J]. ACM Transactions on Mathematical Software, 42, 13(2016).

    [63] [63] SUN Y, KIRLEY M, HALGAMUGE S K. Extended differential grouping f large scale global optimization with direct indirect variable interactions[C]GECCO''15: Proceedings of the 2015 Annual Conference on Geic Evolutionary Computation. New Yk, NY, USA: ACM, 2015: 313–320.

    [67] [67] SUN Y, LI X D, ERNST A, et al. Decomposition f largescale optimization problems with overlapping components[C]2019 IEEE Congress on Evolutionary Computation (CEC). Wellington, New Zeal: IEEE, 2019: 326–333.

    [68] [68] SUN Y, OVAR M N, KIRLEY M, et al. Adaptive threshold parameter estimation with recursive differential grouping f problem decomposition[C]Proceedings of the Geic Evolutionary Computation Conference. New Yk, NY, USA: ACM, 2018: 889–896.

    [70] [70] TSUTSUI S, GOLDBERG D E. Simplex crossover linkage identification: Singlestage evolution vs. Multistage evolution[C]Proceedings of the 2002 Congress on Evolutionary Computation CEC''02 (Cat. No. 02TH8600). Honolulu, HI, USA: IEEE, 2002: 974–979.

    [71] [71] SUN J J, DONG H B. Cooperative coevolution with crelation identification grouping f large scale function optimization[C]2013 IEEE Third International Conference on Infmation Science Technology (ICIST). Yangzhou, China: IEEE, 2013: 889–893.

    [75] [75] LICHBACH M I. The Cooperat''s Dilemma[M]. Ann Arb: University of Michigan Press, 1996.

    [76] [76] PANAIT L, LUKE S. ing infmative actions improves cooperative multiagent learning[C]Proceedings of the Fifth International Joint Conference on Autonomous Agents Multiagent Systems. New Yk, NY, USA: ACM, 2006: 760–766.

    [77] [77] LUKE S, SULLIVAN K, ABIDI F. Large scale empirical analysis of cooperative coevolution[C]Proceedings of the 13th Annual Conference Companion on Geic Evolutionary Computation. New Yk, NY, USA: ACM, 2011: 151–152.

    [79] [79] PANAIT L, LUKE S, HARRISON J F. Archivebased cooperative coevolutionary algithms[C]GECCO’06: Proceedings of the 8th Annual Conference on Geic Evolutionary Computation. New Yk, NY, USA: ACM, 2006: 345–352.

    [81] [81] AU C K, LEUNG H F. Investigating collabation methods of rom immigrant scheme in cooperative coevolution[C]2009 IEEE Congress on Evolutionary Computation. Trondheim, Nway: IEEE, 2009: 2700–2707.

    [82] [82] GLIEUX E, SVENSSON B, DANIELSSON F, et al. Improved constructive cooperative coevolutionary differential evolution f largescale optimisation[C]2015 IEEE Symposium Series on Computational Intelligence. Cape Town, South Africa: IEEE, 2015: 1703–1710.

    [84] [84] SEREDYNSKI F. Loosely coupled distributed geic algithms[M]DAVID Y, SCHWEFEL H P, MÄNNER R. International Conference on Evolutionary Computation the Third Conference on Parallel Problem Solving from Nature Jerusalem. Jerusalem, Israel: Springer, 1994: 514–523.

    [86] [86] PANAIT L, LUKE S. A comparative study of two competitive fitness functions[C] Proceedings of the Geic Evolutionary Computation Conference (GECCO 2002). CA: Mgan Kaufmann, 2002: 503–511.

    [87] [87] PANAIT L, WIEG R P, LUKE S. Improving coevolutionary search f optimal multiagent behavis[C]Proceedings of the 18th International Joint Conference on Artificial Intelligence. San Francisco, CA, USA: ACM, 2003: 653–660.

    [88] [88] BUCCI A, POLLACK J B. On identifying global optima in cooperative coevolution[C]GECCO 05: Geic Evolutionary Computation Conference. Washington DC, USA: ACM, 2005: 539–544.

    [89] [89] SHI M. Comparison of sting algithms f multifitness measurement of cooperative coevolution[C]Proceedings of the 11th Annual Conference Companion on Geic Evolutionary Computation Conference. Montréal, Québec, Canada: ACM, 2009: 2583–2588.

    [91] [91] SHI M, WU H F. Pareto cooperative coevolutionary geic algithm using reference sharing collabation[C]GECCO09: Geic Evolutionary Computation Conference. New Yk, NY, USA: ACM, 2009: 867–874.

    [93] [93] WIEG R P, LILES W C, DE JONG K A. An empirical analysis of collabation methods in cooperative coevolutionary algithms[C]Proceedings of the 3rd Annual Conference on Geic Evolutionary Computation (GECCO). San Francisco, CA, USA: Mgan Kaufmann Publishers Inc., 2001: 1235–1245.

    [94] [94] FICICI S G, POLLACK J B. Pareto optimality in coevolutionary learning[M]KELEMEN J, SOSÍK P. 6th European Conference, ECAL 2001. Prague, Czech Republic: Springer, 2001, 2159: 316–325.

    [95] [95] DE JONG E D. Towards a bounded paretocoevolution archive[C]Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753). Ptl, , USA: IEEE, 2004: 2341–2348.

    [96] [96] HAMEED A, CNE D, MGAN D, et al. Largescale optimization: Are cooperative coevolution fitness inheritance additive[C]2013 13th UK Wkshop on Computational Intelligence (UKCI). Guildfd, UK: IEEE, 2013: 104–111.

    [97] [97] HAMEED A H A, KONONOVA A, CNE D. Engineering fitness inheritance cooperative evolution into stateoftheart optimizers[C]2015 IEEE Symposium Series on Computational Intelligence. Cape Town, South Africa: IEEE, 2015: 1695–1702.

    [99] [99] IIO A W, LI X D. A cooperative coevolutionary multiobjective algithm using nondominated sting[M]Geic Evolutionary Computation ConferenceGecco 2004, Pt 1, Proceedings. Seattle, WA, USA: Springer, 2004, 3102: 537–548.

    [100] [100] TAN K C, LEE T H, YANG Y J, et al. A cooperative coevolutionary algithm f multiobjective optimization[C]2004 IEEE International Conference on Systems, Man & Cyberics (IEEE Cat. No. 04CH37583). Hague, herl: IEEE, 2004: 1926–1931.

    [101] [101] WIEG R P. Applying diffusion to a cooperative coevolutionary model[C] International Conference on Parallel Problem Solving from Nature. Springer, Berlin, Heidelberg, 1998: 560–569.

    [102] [102] OVAR M N, LI X D, YAO X. Smart use of computational resources based on contribution f cooperative coevolutionary algithms[C]Proceedings of the 13th Annual Conference on Geic Evolutionary Computation. New Yk, NY, USA: ACM, 2011: 1115–1122.

    [103] [103] OVAR M N, KAZIMIPOUR B, LI X D, et al. Cbcc3—a contributionbased cooperative coevolutionary algithm with improved explationexploitation balance[C]2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver, BC, Canada: IEEE, 2016: 3541–3548.

    [105] CUI M J, LI L, SHI M J. A selective biogeography-based optimizer considering resource allocation for large-scale global optimization[J]. Computational Intelligence and Neuroscience, 1240162(2019).

    [106] [106] MÜHLENBEIN H, PAAß G. From recombination of genes to the estimation of distributions I. Binary parameters[C]International Conference on Evolutionary Computation—The 4th International Conference on Parallel Problem Solving from Nature. Berlin, Germany: Springer, 1996: 178–187.

    [107] [107] PELIKAN M, GOLDBERG D E, CANTÚPAZ E. BOA: The bayesian optimization algithm[C]GECCO''99: Proceedings of the 1st Annual Conference on Geic Evolutionary Computation. San Francisco, CA, USA: Mgan Kaufmann Publishers Inc., 1999: 525–532.

    [109] [109] Baluja S. Populationbased incremental learning. a method f integrating geic search based function optimization competitive learning[R]. CarnegieMellon Univ Pittsburgh Pa Dept of Computer Science, 1994.

    [111] [111] XU Q, SANYANG M L, KABÁN A. Large scale continuous EDA using mutual infmation[C]2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver, BC, Canada: IEEE, 2016: 3718–3725.

    [116] [116] SCHAFFER J D, MISHIMA A. An adaptive crossover distribution mechanism f geic algithms[C]Proceedings of the Second International Conference on Geic Algithms on Geic Algithms Their Application. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc, 1987: 36–40.

    [117] [117] LEVENICK J. Metabits: Generic endogenous crossover control[C]Proceedings of the Sixth International Conference on Geic Algithms. San Francisco, CA, United States: Mgan Kaufmann Publishers Inc., 1995.

    [118] [118] SMITH J, FOGARTY T C. Recombination strategy adaptation via evolution of gene linkage[C]Proceedings of IEEE International Conference on Evolutionary Computation. Nagoya, Japan: IEEE, 1996: 826–831.

    [121] [121] OVAR M N, LI X D. A comparative study of CMAES on large scale global optimisation[C]23rd Australasian Joint Conference on Artificial Intelligence. Adelaide, Australia: Springer, 2010.

    [125] [125] AUGER A, HANSEN N, MAUNY N, et al. Bioinspired continuous optimization: the coming of age[C]CEC 2007. Piscataway, NJ, USA: [s.n.], 2007.

    [126] [126] TOINT P L. Test problems f partially separable optimization results f the routine pspmin[R]. Belgium: The University of Namur, Department of Mathematics, 1983.

    [128] [128] TEZUKA M, MUOMO M, AKAMA K. Linkage identification by nonlinearity check f realcoded geic algithms[M]DEB K. Geic Evolutionary Computation Conference. Seattle, WA, USA: Springer, 2004, 3103: 222–233.

    [130] [130] SAYED E, ESSAM D, SARKER R. Using hybrid dependency identification with a memetic algithm f large scale optimization problems[C]9th International Conference, SEAL 2012. Hanoi, Vietnam: Springer, 2012: 168–177.

    [131] [131] WEICKER K, WEICKER N. On the improvement of coevolutionary optimizers by learning variable interdependencies[C]Proceedings of the 1999 Congress on Evolutionary ComputationCEC99 (Cat. No. 99TH8406). Washington, DC, USA: IEEE, 1999: 1627–1632.

    [140] [140] TENNE Y, IZUI K, NISHIWAKI S. Dimensionalityreduction framewks f computationally expensive problems[C]2010 IEEE Congress on Evolutionary Computation. Barcelona, Spain: IEEE, 2010.

    [143] [143] FU G X, SUN C L, TAN Y, et al. A surrogateassisted evolutionary algithm with rom feature ion f largescale expensive problems[M]BÄCK T, PREUSS M, DEUTZ A, et al. Parallel Problem Solving from Nature – PPSN XVI. Cham: Springer, 2020: 125–139.

    [147] [147] WERTH B, PITZER E, AFFENZELLER M. Enabling highdimensional surrogateassisted optimization by using sliding windows[C]Proceedings of the Geic Evolutionary Computation Conference Companion. Berlin, Germany, Deutschl: ACM, 2017: 1630–1637.

    [149] [149] BL J, BEAUTHIER C, CARLETTI T. A surrogateassisted cooperative coevolutionary algithm f solving high dimensional, expensive black box optimization problems[M]RODRIGUES H C, HERSKOVITS J, MOTA SOARES C M, et al. EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization. Cham: Springer, 2019: 41–52.

    [150] [150] BL J, BEAUTHIER C, CARLETTI T. A surrogateassisted cooperative coevolutionary algithm using recursive differential grouping as decomposition strategy[C]2019 IEEE Congress on Evolutionary Computation (CEC). Wellington, New Zeal: IEEE, 2019: 689–696.

    Tools

    Get Citation

    Copy Citation Text

    Puyu JIANG, Jun LIU, Qi ZHOU, Yuansheng CHENG. Advances in meta-heuristic methods for large-scale black-box optimization problems[J]. Chinese Journal of Ship Research, 2021, 16(4): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 31, 2020

    Accepted: --

    Published Online: Mar. 28, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.02248

    Topics