Journal of Inorganic Materials, Volume. 40, Issue 6, 656(2025)
[2] DING Y H, LIU L, YANG Z J et al. Structure and microwave dielectric characteristics of Hf1-
[4] HILL M D, CRUICKSHANK D B, MACFARLANE I A. Perspective on ceramic materials for 5G wireless communication systems[J]. Applied Physics Letters, 118, 120501(2021).
[5] ZURMÜHLEN R, PETZELT J, KAMBA S et al. Dielectric- spectroscopy of Ba(B'1/2B''1/2)O3 complex perovskite ceramics- correlations between ionic parameters and microwave dielectric properties. I. Infrared reflectivity study (1012-1014 Hz)[J]. Journal of Applied Physics, 77, 5341(1995).
[6] BOSMAN A J, HAVINGA E E. Temperature dependence of dielectric constants of cubic ionic compounds[J]. Physical Review, 129, 1593(1963).
[7] REANEY I M, IDDLES D. Microwave dielectric ceramics for resonators and filters in mobile phone networks[J]. Journal of the American Ceramic Society, 89, 2063(2006).
[8] HARROP P J. Temperature coefficients of capacitance of solids[J]. Journal of Materials Science, 4:, 370(1969).
[9] COCKBAIN A G, HARROP P J. The temperature coefficient of capacitance[J]. Journal of Physics D Applied Physics, 1, 1109(1968).
[10] WISE P L, REANEY I M, LEE W E et al. Tunability of
[11] XIAO Y, CHEN X M, LIU X Q. Microstructures and microwave dielectric characteristics of CaRAlO4 (R = Nd, Sm, Y) ceramics with tetragonal K2NiF4 structure[J]. Journal of the American Ceramic Society, 87, 2143(2004).
[12] FAN X C, CHEN X M, LIU X Q. Structural dependence of microwave dielectric properties of SrRAlO4 (R = Sm, Nd, La) ceramics: crystal structure refinement and infrared reflectivity study[J]. Chemistry of Materials, 20, 4092(2008).
[13] LIU B, LI L, LIU X Q et al. Structural evolution of SrLaAl1-
[14] COLLA E L, REANEY I M, SETTER N. Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity[J]. Journal of Applied Physics, 74, 3414(1993).
[15] REANEY I M, COLLA E L, SETTER N. Dielectric and structural characteristics of Ba-and Sr-based complex perovskites as a function of tolerance factor[J]. Japanese Journal of Applied Physics, 33(1994).
[16] REANEY I M, WISE P L, UBIC R et al. On the temperature coefficient of resonant frequency in microwave dielectrics[J]. Philosophical Magazine A, 81, 501(2001).
[17] WISE P L, REANEY I M, LEE W E et al. Structure-microwave property relations in (Sr
[18] ZHOU D, RANDALL C A, WANG H et al. Ultra-low firing high-k scheelite structures based on [(Li0.5Bi0.5)
[19] DU K, YIN C Z, GUO Y B et al. Phase transition and permittivity stability against temperature of CaSn1-
[20] WU F F, ZHOU D, DU C et al. Design of a sub-6 GHz dielectric resonator antenna with novel temperature-stabilized (Sm1-
[21] CHENG K, LI C C, YIN C Z et al. Effects of Sr2+ substitution on the crystal structure, Raman spectra, bond valence and microwave dielectric properties of Ba3-
[22] YIN C Z, YIN Y H, DU K et al. Fabrication of high-efficiency dielectric patch antennas from temperature-stable Sr3-
[23] LEE H J, HONG K S, KIM S J et al. Dielectric properties of MNb2O6 compounds (where M = Ca, Mn, Co, Ni, OR Zn)[J]. Materials Research Bulletin, 32, 847(1997).
[24] LEI W, ZOU Z Y, CHEN Z H et al. Controllable
[25] KIM E S, CHOI W. Effect of phase transition on the microwave dielectric properties of BiNbO4[J]. Journal of the European Ceramic Society, 26, 1761(2006).
[26] JO H J, KIM J S, KIM E S. Microwave dielectric properties of MgTiO3-based ceramics[J]. Ceramics International(2015).
[27] CHEN J Q, FANG W S, AO L Y et al. Structure and chemical bond characteristics of two low-
[28] ZHANG J Y, LI J, SUN Y H et al. Densification, microwave dielectric properties and rattling effect of LiYbO2 ceramics with low
[29] KANG D H, KIM E S. Microwave dielectric properties of rutile (Zn1/3Nb2/3)0.40(Ti1-
[30] KIM E S, KANG D H. Relationships between crystal structure and microwave dielectric properties of (Zn1/3B2/35+)
[31] KIM E S, KANG D H. Microwave dielectric properties of (A2+1/3B5+2/3)0.5Ti0.5O2 (A2+ = Zn, Mg, B5+= Nb, Ta) ceramics[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55, 1069(2008).
[32] CHOI J W, VAN DOVER R B. Correlation between temperature coefficient of resonant frequency and tetragonality ratio[J]. Journal of the American Ceramic Society, 89, 1144(2006).
[33] LIAO Q W, LI L X, REN X et al. New low-loss microwave dielectric material ZnTiNbTaO8[J]. Journal of the American Ceramic Society, 94, 3237(2011).
[34] RAMARAO S D, MURTHY V R K. Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A: Mn, Zn, Mg and Co) ceramics[J]. Scripta Materialia, 69, 274(2013).
[35] LIAO Q W, LI L X. Structural dependence of microwave dielectric properties of ixiolite structured ZnTiNb2O8 materials: crystal structure refinement and Raman spectra study[J]. Dalton Transactions, 41, 6963(2012).
[36] XIA W S, LI L X, NING P F et al. Relationship between bond ionicity, lattice energy, and microwave dielectric properties of Zn(Ta1-
[37] MA X M, ZHOU X, TIAN H R et al. Effect of (Zn1/3Nb2/3)4+ co-substitution on the microwave dielectric properties of Ce2Zr3(MoO4)9 ceramics[J]. Ceramics International, 48, 7441(2022).
[38] LI H, CHEN X Q, XIANG Q Y et al. Structure, bond characteristics and Raman spectra of CaMg1-
[39] PASCHOAL C W A, MOREIRA R L, SURENDRAN K P et al. Infrared reflectivity and intrinsic dielectric behavior of RETiTaO6 (RE = Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb) microwave ceramics[J]. Journal of Materials Research, 20, 1164(2005).
[40] PARK H S, YOON K H, KIM E S. Relationship between the bond valence and the temperature coefficient of the resonant frequency in the complex perovskite (Pb1-
[41] YOON K H, KIM W S, KIM E S. Dependence of the octahedral bond valence on microwave dielectric properties of Ca1-
[42] PARK H S, YOON K H, KIM E S. Effect of bond valence on microwave dielectric properties of complex perovskite ceramics[J]. Materials Chemistry and Physics, 79, 181(2003).
[43] CHO Y S, YOON K H, LEE B D et al. Understanding microwave dielectric properties of Pb-based complex perovskite ceramics
[44] LUFASO M W. Crystal structures, modeling, and dielectric property relationships of 2 : 1 ordered Ba3MM'2O9 (M = Mg, Ni, Zn; M' = Nb, Ta) perovskites[J]. Chemistry of Materials, 16, 2148(2004).
[45] ZHANG H, FANG L, DRONSKOWSKI R et al. Some A6B5O18 cation-deficient perovskites in the BaO-La2O3-TiO2-Nb2O5 system[J]. Journal of Solid State Chemistry, 177, 4007(2004).
[46] ZHANG H, FANG L, ELSEBROCK R et al. Crystal structure and microwave dielectric properties of a new A6B5O18-type cation-deficient perovskite Ba3La3Ti4NbO18[J]. Materials Chemistry and Physics, 93, 450(2005).
[47] KIM E S, CHUN B S, FREER R et al. Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics[J]. Journal of the European Ceramic Society, 30, 1731(2010).
[48] KIM E S, JEON C J, CLEM P G. Effects of crystal structure on the microwave dielectric properties of ABO4 (A=Ni, Mg, Zn and B= Mo, W) ceramic[J]. Journal of the American Ceramic Society, 95, 2934(2012).
[49] YOON S H, KIM D W, CHO S Y et al. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds[J]. Journal of the European Ceramic Society, 26, 2051(2006).
[50] CHOI G K, KIM J R, YOON S H et al. Microwave dielectric properties of scheelite (A=Ca, Sr, Ba) and wolframite (A=Mg, Zn, Mn) AMoO4 compounds[J]. Journal of the European Ceramic Society, 27, 3063(2007).
[52] NEELAKANTAN U A, KALATHIL S E, RATHEESH R. Structure and microwave dielectric properties of ultralow-temperature cofirable BaV2O6 ceramics[J]. European Journal of Inorganic Chemistry, 2015, 305(2015).
[53] TANG Y, ZHANG Z W, LI J et al. A3Y2Ge3O12 (A=Ca, Mg): two novel microwave dielectric ceramics with contrasting
[54] DUNITZ J D, ORGEL L E. Stereochemistry of ionic solids[J]. Advances in Inorganic Chemistry and Radiochemistry, 2:, 1(1960).
[55] SHANNON R D. Dielectric polarizabilities of ions in oxides and fluorides[J]. Journal of Applied Physics, 73, 348(1993).
[58] TANG Y, LI H, LI J et al. Relationship between Rattling Mg2+ ions and anomalous microwave dielectric behavior in Ca3-
[59] LIU M X, LI J, TANG Y et al. Tunability of
[60] YANG Y, ZHAI Y F, XIANG H C et al. Rattling effects on microwave dielectric properties of Ca3TiBGe3O12 (B = Mg, Zn) garnets[J]. Journal of the European Ceramic Society, 42, 4566(2022).
[61] YANG Y, TANG Y, LI J et al. Effects of ionic coordination bonding on microwave dielectric properties of Y2CaBGa4O12 (B = Zr, Sn) garnets[J]. ACS Applied Electronic Materials, 4, 3512(2022).
[62] GU X L, TANG Y, CHEN J Q et al. Tuning microwave dielectric properties of low-temperature sintered Ca1-
[63] XU L, FANG W S, TANG Y et al. Crystal structure evolution, bond characteristics and tunable microwave dielectric properties of (Ce1-
[64] WANG S J, FANG W S, WU D F et al. Two K20 microwave dielectric ceramics SrLnAlO4 (Ln=Eu, Gd) with near-zero
[65] MENG K Y, WU D F, WANG S J et al. Tuning
[66] LI F H, TANG Y, LI J et al. Effect of A-site cation on crystal structure and microwave dielectric properties of AGe4O9 (A=Ba, Sr) ceramics[J]. Journal of the European Ceramic Society, 41, 4153(2021).
[67] SUN Y, XIANG H C, TANG Y et al. Constructing the cationic rattling effect to realize the adjustability of the temperature coefficient in Nd2-
[68] SUN Y, WU J T, TANG Y et al. Effects of ion polarizability and oxygen vacancy on microwave dielectric properties of fluorite- structured Ce1-
[69] JIA Y Q, LUO W K, LI L et al. MSO4 (M = Ca, Sr, Ba) microwave dielectric ceramics with low dielectric constant[J]. Journal of the American Ceramic Society, 106, 1250(2023).
[70] WANG X, ZHU X L, LI L et al. Structure evolution and adjustment of
[71] JIANG Y, WU G F, MAO M M et al. Deeper insights into dodecahedron distortion and microwave dielectric properties of Y3-
Get Citation
Copy Citation Text
Ying TANG, Jie LI, Huaicheng XIANG, Weishuang FANG, Huixing LIN, Junfeng YANG, Liang FANG.
Category:
Received: Dec. 18, 2024
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Jie LI (jielee@glut.edu.cn), Liang FANG (fanglianggl001@aliyun.com)