Chinese Optics, Volume. 12, Issue 6, 1271(2019)
Fabrication of ZnO nanorods/CdS quantum dots and its detection performance in UV-Visible waveband
[1] [1] ZHANG J Y,JIANG D Y,JU ZH G,et al.. MgxZn1-xO thin film and UV detector for solar-blind wavelength[J]. Chinese Journal of Optics and Applied Optics,2008,1(1): 80-84.(in Chinese)
[2] [2] FANG Y J,DONG Q F,SHAO Y CH,et al.. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination[J]. Nature Photonics,2015,9(10): 679-686.
[4] [4] HU L,ZHU L P,HE H P,et al.. Colloidal chemically fabricated ZnO: Cu-based photodetector with extended UV-visible detection waveband[J]. Nanoscale,2013,5(20): 9577-9581.
[5] [5] TANG X Q,CHEN Y Y,LUO Y N,et al.. A novel glutathione photoelectrochemical sensor based on titanium dioxide nanorods @ZnIn2S4 nansheets nanocomposites[J]. Chinese J. Anal. Chem.,2019,47(8): 1188-1194.(in Chinese)
[6] [6] LI X D,GAO C T,DUAN H G,et al.. High-performance photoelectrochemical-type self-powered UV photodetector using epitaxial TiO2/SnO2 branched heterojunction nanostructure[J]. Small,2013,9(11): 2005-2011.
[7] [7] HU Y,XU S W,LI X,et al.. Performance of self-powered UV photodetector based on ZnO/ZnS heterojunction[J]. Chin. J. Mater. Res.,2019,33(7): 523-529.(in Chinese)
[8] [8] HU M J,JIN B Y. Research on film type acetone sensor based on copper oxide/zinc oxide heterostructure nanoflower[J]. Chinese J. Anal. Chem.,2019,47(3): 363-370.(in Chinese)
[10] [10] SONG ZH M,ZHAO D X,GUO ZH,et al.. Fabrication and fast photoresponse properties of ZnO nanowires photodetectors[J]. Acta Physica Sinica,2012,61(5): 052901.(in Chinese)
[11] [11] KHAYATIAN A,ASGAR V,RAMAZANI A,et al.. Diameter-controlled synthesis of ZnO nanorods on Fe-doped ZnO seed layer and enhanced photodetection performance[J]. Materials Research Bulletin,2017,94: 77-84.
[12] [12] YAN SH K,RAI S C,ZHENG ZH,et al.. Piezophototronic effect enhanced UV/Visible photodetector based on ZnO/ZnSe heterostructure core/shell nanowire array and its self-powered performance[J]. Advanced Electronic Materials,2016,2(12): 1600242.
[13] [13] CHEN Q Y,TAN X C,DU F K,et al.. A photoelectrochemical sensor based on CdS sensitized Fe∶TiO2 nanosheets for determination of Cu2+[J]. Chinese J. Anal. Chem.,2018,46(2): 232-238.(in Chinese)
[14] [14] WEI R B,KUANG P Y,CHENG H,et al.. Plasmon-enhanced photoelectrochemical water splitting on gold NPs decorated ZnO/CdS nanotube arrays[J]. ACS Sustainable Chemistry & Engineering,2017,5(5): 4249-4257.
[15] [15] DING M,YAO N N,WANG CH G,et al.. ZnO@CdS core-shell heterostructures: fabrication, enhanced photocatalytic, and photoelectrochemical performance[J]. Nanoscale Research Letters,2016,11(1): 205.
[16] [16] ZHAO H,DONG Y M,JIANG P P,et al.. Light-assisted preparation of a ZnO/CdS nanocomposite for enhanced photocatalytic H2 evolution: an insight into importance of in situ generated ZnS[J]. ACS Sustainable Chemistry & Engineering,2015,3(5): 969-977.
[17] [17] TAK Y,HONG S J,LEE J S,et al.. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion[J]. Journal of Materials Chemistry,2009,19(33): 5945-5951.
[18] [18] SALEM M,AKIR S,MASSOUDI I,et al.. Photoelectrochemical and optical properties tuning of graphene-ZnO nanocomposites[J]. Journal of Alloys and Compounds,2018,767: 982-987.
[19] [19] LI P,HOU CH CH,ZHANG X H,et al.. Ethylenediamine-functionalized CdS/tetra(4-carboxyphenyl)porphyrin iron(III) chloride hybrid system for enhanced CO2 photoreduction[J]. Applied Surface Science,2018,459: 292-299.
[20] [20] SELMAN A M,HASSAN Z. Highly sensitive fast-response UV photodiode fabricated from rutile TiO2 nanorod array on silicon substrate[J]. Sensors and Actuators A: Physical,2015,221: 15-21.
[21] [21] KUMAR P S,RAJ A D,MANGALARAJ D,et al.. Hydrophobic ZnO nanostructured thin films on glass substrate by simple successive ionic layer absorption and reaction(SILAR) method[J]. Thin Solid Films,2010,518(24): e183-e186.
[22] [22] LV J P,FANG M H. Photoluminescence study of interstitial oxygen defects in ZnO nanostructures[J]. Materials Letters,2018,218: 18-21.
[23] [23] VANALAKAR S A,MALI S S,SURYAWANSHI M P,et al.. Photoluminescence quenching of a CdS nanoparticles/ZnO nanorods core-shell heterogeneous film and its improved photovoltaic performance[J]. Optical Materials,2014,37: 766-772.
[24] [24] LAVAND A B,MALGHE Y S. Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposite[J]. Journal of Saudi Chemical Society,2015,19(5): 471-478.
[25] [25] KAMBLE A,SINHA B,CHUNG K,et al.. Facile linker free growth of CdS nanoshell on 1-D ZnO: solar cell application[J]. Electronic Materials Letters,2015,11(2): 171-179.
[26] [26] LI B X,WANG Y F. Synthesis, microstructure, and photocatalysis of ZnO/CdS nano-heterostructure[J]. Journal of Physics and Chemistry of Solids,2011,72(10): 1165-1169.
[27] [27] JUN H K,CAREEM M A,AROF A K. A suitable polysulfide electrolyte for CdSe quantum dot-sensitized solar cells[J]. International Journal of Photoenergy,2013,2013: 942139.
[28] [28] LI CH H,XIAO D. Researches on the polysulfide electrolyte effect for CdS thin film photoelectrochemical cells[J]. Chemical Research and Application,2010,22(8): 1042-1045.(in Chinese)
Get Citation
Copy Citation Text
HU Yi, HU Geng-xin, ZHANG Jie-jing, SANG Dan-dan, LI Yi-kun, GAO Shi-yong. Fabrication of ZnO nanorods/CdS quantum dots and its detection performance in UV-Visible waveband[J]. Chinese Optics, 2019, 12(6): 1271
Category:
Received: Jan. 29, 2019
Accepted: --
Published Online: Jan. 19, 2020
The Author Email: