The Journal of Light Scattering, Volume. 36, Issue 3, 320(2024)

Progress in Line-Scanning Raman Spectroscopy Developments and Applications in Biomedicine

LI Yifan1, LI Xiaoqiang1,2, QI Xiangdong1, HU Huijie1,2、*, and SONG Yizhi1,2
Author Affiliations
  • 1Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Jiangsu Suzhou, 215163
  • 2School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Hefei 230026
  • show less
    References(44)

    [1] [1] Raman C V, Krishnan K S. A New Type of Secondary Radiation[J]. Nature, 1928, 121(3048): 501-502.

    [4] [4] Huang W E, Griffiths R I, Thompson I P, et al. Raman Microscopic Analysis of Single Microbial Cells[J]. Analytical Chemistry, 2004, 76(15): 4452-4458.

    [5] [5] Cheng J X, Xie X S. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine[J]. Science, 2015, 350(6264): aaa8870.

    [6] [6] Palonpon A F, Ando J, Yamakoshi H, et al. Raman and SERS microscopy for molecular imaging of live cells[J]. Nature Protocols, 2013, 8(4): 677-692.

    [7] [7] Petry R, Schmitt M, Popp J. Raman Spectroscopy—A Prospective Tool in the Life Sciences[J]. ChemPhysChem, 2003, 4(1): 14-30.

    [8] [8] Sato H, Popp J, Wood B R, et al. Raman Spectroscopy in Human Health and Biomedicine[M]. WORLD SCIENTIFIC, 2023.

    [9] [9] Okuno M, Hamaguchi H o. Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells[J]. Optics Letters, 2010, 35(24): 4096.

    [10] [10] Bowden M, Gardiner D J, Rice G, et al. Line-scanned micro Raman spectroscopy using a cooled CCD imaging detector[J]. Journal of Raman Spectroscopy, 1990, 21(1): 37-41.

    [11] [11] Hamada K, Fujita K, Smith N I, et al. Raman microscopy for dynamic molecular imaging of living cells[J]. Journal of Biomedical Optics, 2008, 13(4): 1.

    [12] [12] Wu Q, Xiao D, Wang N, et al. Rapid identification of micro and nanoplastics by line scan Raman micro-spectroscopy[J]. Talanta, 2024, 266: 125067.

    [13] [13] Powell I. Design of a laser beam line expander[J]. Applied Optics, 1987, 26(17): 3705.

    [14] [14] De Grauw C J, Otto C, Greve J. Line-Scan Raman Microspectrometry for Biological Applications[J]. Applied Spectroscopy, 1997, 51(11): 1607-1612.

    [15] [15] Christensen K A, Morris M D. Hyperspectral Raman Microscopic Imaging Using Powell Lens Line Illumination[J]. Applied Spectroscopy, 1998, 52(9): 1145-1147.

    [16] [16] Schie I W, Alber L, Gryshuk A L, et al. Investigating drug induced changes in single, living lymphocytes based on Raman micro-spectroscopy[J]. The Analyst, 2014, 139(11): 2726-2733.

    [17] [17] Qi J, Shih W C. Performance of line-scan Raman microscopy for high-throughput chemical imaging of cell population[J]. Applied Optics, 2014, 53(13): 2881.

    [18] [18] Bovenkamp D, Micko A, Püls J, et al. Line Scan Raman Microspectroscopy for Label-Free Diagnosis of Human Pituitary Biopsies[J]. Molecules, 2019, 24(19): 3577.

    [19] [19] Kumamoto Y, Mochizuki K, Hashimoto K, et al. High-Throughput Cell Imaging and Classification by Narrowband and Low-Spectral-Resolution Raman Microscopy[J]. The Journal of Physical Chemistry B, 2019, 123(12): 2654-2661.

    [20] [20] Okada M, Smith N I, Palonpon A F, et al. Label-free Raman observation of cytochrome c dynamics during apoptosis[J]. Proceedings of the National Academy of Sciences, 2012, 109(1): 28-32.

    [21] [21] Hashimoto A, Yamaguchi Y, Chiu L da, et al. Time-lapse Raman imaging of osteoblast differentiation[J]. Scientific Reports, 2015, 5(1): 12529.

    [22] [22] Harada Y, Dai P, Yamaoka Y, et al. Intracellular dynamics of topoisomerase I inhibitor, CPT-11, by slit-scanning confocal Raman microscopy[J]. Histochemistry and Cell Biology, 2009, 132(1): 39-46.

    [23] [23] Ogawa M, Harada Y, Yamaoka Y, et al. Label-free biochemical imaging of heart tissue with high-speed spontaneous Raman microscopy[J]. Biochemical and Biophysical Research Communications, 2009, 382(2): 370-374.

    [24] [24] Nishiki-Muranishi N, Harada Y, Minamikawa T, et al. Label-Free Evaluation of Myocardial Infarction and Its Repair by Spontaneous Raman Spectroscopy[J]. Analytical Chemistry, 2014, 86(14): 6903-6910.

    [25] [25] Yamamoto T, Minamikawa T, Harada Y, et al. Label-free Evaluation of Myocardial Infarct in Surgically Excised Ventricular Myocardium by Raman Spectroscopy[J]. Scientific Reports, 2018, 8(1): 14671.

    [26] [26] Minamikawa T, Harada Y, Koizumi N, et al. Label-free detection of peripheral nerve tissues against adjacent tissues by spontaneous Raman microspectroscopy[J]. Histochemistry and Cell Biology, 2013, 139(1): 181-193.

    [27] [27] Yamakoshi H, Dodo K, Okada M, et al. Imaging of EdU, an Alkyne-Tagged Cell Proliferation Probe, by Raman Microscopy[J]. Journal of the American Chemical Society, 2011, 133(16): 6102-6105.

    [28] [28] Palonpon A, Okada M, Ando J, et al. Slit-scanning confocal Raman microscopy: Practical applications in live cell imaging[C]. 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology. Sydney, Australia: IEEE, 2011: 86-88.

    [29] [29] Yamakoshi H, Palonpon A, Dodo K, et al. A sensitive and specific Raman probe based on bisarylbutadiyne for live cell imaging of mitochondria[J]. Bioorganic & Medicinal Chemistry Letters, 2015, 25(3): 664-667.

    [30] [30] Yamakoshi H, Palonpon A F, Dodo K, et al. Simultaneous imaging of protonated and deprotonated carbonylcyanide p-trifluoromethoxyphenylhydrazone in live cells by Raman microscopy[J]. Chem. Commun., 2014, 50(11): 1341-1343.

    [31] [31] Ando J, Kinoshita M, Cui J, et al. Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy[J]. Proceedings of the National Academy of Sciences, 2015, 112(15): 4558-4563.

    [32] [32] Ando J, Palonpon A F, Sodeoka M, et al. High-speed Raman imaging of cellular processes[J]. Current Opinion in Chemical Biology, 2016, 33: 16-24.

    [33] [33] Yu Y, Tang Y, Chu K, et al. High-Resolution Low-Power Hyperspectral Line-Scan Imaging of Fast Cellular Dynamics Using Azo-Enhanced Raman Scattering Probes[J]. Journal of the American Chemical Society, 2022, 144(33): 15314-15323.

    [34] [34] Fujita K, Ishitobi S, Hamada K, et al. Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell[J]. Journal of Biomedical Optics, 2009, 14(2): 024038.

    [35] [35] Zhang Z, Bando K, Mochizuki K, et al. Quantitative Evaluation of Surface-Enhanced Raman Scattering Nanoparticles for Intracellular pH Sensing at a Single Particle Level[J]. Analytical Chemistry, 2019, 91(5): 3254-3262.

    [36] [36] Mochizuki K, Kumamoto Y, Maeda S, et al. High-throughput line-illumination Raman microscopy with multislit detection[J]. Biomedical Optics Express, 2023, 14(3): 1015.

    [37] [37] Pavillon N, Smith N I. Compressed sensing laser scanning microscopy[J]. Optics Express, 2016, 24(26): 30038.

    [38] [38] He H, Xu M, Zong C, et al. Speeding Up the Line-Scan Raman Imaging of Living Cells by Deep Convolutional Neural Network[J]. Analytical Chemistry, 2019, 91(11): 7070-7077.

    [39] [39] Bhuiyan A H, Clément J E, Ferdous Z, et al. Differentiability of cell types enhanced by detrending a non-homogeneous pattern in a line-illumination Raman microscope[J]. The Analyst, 2023, 148(15): 3574-3583.

    [40] [40] Hamada K, Fujita K, Kobayashi M, et al. Observation of cell dynamics by laser scanning Raman microscope[C]. CONCHELLO J A, COGSWELL C J, WILSON T. Biomedical Optics (BiOS) 2007. San Jose, CA, 2007: 64430Z.

    [41] [41] Kawata S, Arimoto R, Nakamura O. Three-dimensional optical-transfer-function analysis for a laser-scan fluorescence microscope with an extended detector[J]. Journal of the Optical Society of America A, 1991, 8(1): 171.

    [42] [42] Watanabe K, Palonpon A F, Smith N I, et al. Structured line illumination Raman microscopy[J]. Nature Communications, 2015, 6(1): 10095.

    [43] [43] Hu C, Jiang Z, Liu P, et al. Super-resolved Raman imaging via galvo-painted structured line illumination[J]. Optics Letters, 2022, 47(22): 5949.

    [44] [44] Pavillon N, Hobro A J, Smith N I. Cell Optical Density and Molecular Composition Revealed by Simultaneous Multimodal Label-Free Imaging[J]. Biophysical Journal, 2013, 105(5): 1123-1132.

    [45] [45] Pavillon N, Smith N I. Implementation of simultaneous quantitative phase with Raman imaging[J]. EPJ Techniques and Instrumentation, 2015, 2(1): 5.

    [46] [46] Pavillon N, Fujita K, Isaac Smith N. Multimodal label-free microscopy[J]. Journal of Innovative Optical Health Sciences, 2014, 07(5): 1330009.

    Tools

    Get Citation

    Copy Citation Text

    LI Yifan, LI Xiaoqiang, QI Xiangdong, HU Huijie, SONG Yizhi. Progress in Line-Scanning Raman Spectroscopy Developments and Applications in Biomedicine[J]. The Journal of Light Scattering, 2024, 36(3): 320

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 9, 2024

    Accepted: Nov. 21, 2024

    Published Online: Nov. 21, 2024

    The Author Email: Huijie HU (huhj@sibet.ac.cn)

    DOI:10.13883/j.issn1004-5929.202403008

    Topics