Photonics Research, Volume. 8, Issue 8, A16(2020)

Triple-cation perovskite solar cells for visible light communications Spotlight on Optics

Natalie A. Mica1, Rui Bian2, Pavlos Manousiadis1, Lethy K. Jagadamma1, Iman Tavakkolnia2, Harald Haas2,3、*, Graham A. Turnbull1,4、*, and Ifor D. W. Samuel1,5、*
Author Affiliations
  • 1Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, St Andrews, Fife KY16 9SS, UK
  • 2LiFi Research and Development Centre, Institute for Digital Communications, School of Engineering, University of Edinburgh, Edinburgh EH9 3FD, UK
  • 3e-mail: H.Haas@ed.ac.uk
  • 4e-mail: gat@st-andrews.ac.uk
  • 5e-mail: idws@st-andrews.ac.uk
  • show less
    Figures & Tables(13)
    SEM images of triple-cation perovskite films for all thicknesses. The red bar corresponds to a length of 2 μm.
    Triple-cation perovskite devices with their (a) best J-V curves under 0.9 mW/cm2 indoor white LED illumination, (b) EQE, and (c) I-V curves under 50 mW red laser (660 nm) illumination.
    Low-magnification SEM images of the three thickest triple-cation perovskite films. The blue scale bar represents a length of 10 μm.
    (a) Box and whisker distributions of the −3 dB bandwidth and (b) achieved data rate for perovskite devices with varied active layer thickness. Here, the mean of the data is represented as a square, the median a solid line, and the ends of the box represent the 25%–75% range.
    (a) Transient photovoltage measurements for triple-cation perovskite solar cells with varied thickness. (b) Fitted RC time constant from this measurement.
    Example frequency response for each perovskite thickness device.
    Example of bit loading from one measurement of each thickness: (a) 60 nm, (b) 170 nm, (c) 250 nm, (d) 640 nm, (e) 840 nm, (f) 965 nm.
    • Table 1. Cell Performance of Triple-Cation Devices with Varied Active Layer Thickness Using a White LED with an Incident Optical Power of 0.9  mW/cm2a,b

      View table
      View in Article

      Table 1. Cell Performance of Triple-Cation Devices with Varied Active Layer Thickness Using a White LED with an Incident Optical Power of 0.9  mW/cm2a,b

      Perov. Thickness [nm]Best PCE [%]PCE [%]FF [%]JSC [mA/cm2]VOC [V]RS [kΩ·cm2]RSH [kΩ·cm2]
      602.92.4±0.641±20.07±0.010.71±0.114.3±0.826.9±7
      17018.716.3±1.871±50.22±0.010.92±0.020.6±0.2143±80
      25020.318.2±2.772±90.25±0.010.92±0.020.7±0.199.1±40
      64021.419.7±1.172±20.27±0.010.92±0.010.5±0.181.3±20
      84014.913.6±1.257±30.25±0.010.87±0.010.8±0.521.6±5
      96513.812.6±1.257±20.23±0.020.86±0.020.9±0.210.7±4
    • Table 2. External Quantum Efficiency of Triple-Cation Solar Cells under 660 nm Low Intensity and Laser Illumination, and Power Conversion Efficiency and Power Generated under 50 mW Laser Power

      View table
      View in Article

      Table 2. External Quantum Efficiency of Triple-Cation Solar Cells under 660 nm Low Intensity and Laser Illumination, and Power Conversion Efficiency and Power Generated under 50 mW Laser Power

      Perov. Thickness [nm]EQE under Low Intensity [%]EQE with Red Laser [%]PCE with Red Laser [%]Power Generated [mW]
      6028166.13.1
      17039249.04.5
      25053246.53.3
      64061247.73.9
      84056318.84.4
      96559266.73.3
    • Table 3. Average and Standard Deviation of 3  dB Bandwidth, Data Rate, BER, and Number of Measured Samples of Triple-Cation Photodetectors with Varied Active Layer Thickness

      View table
      View in Article

      Table 3. Average and Standard Deviation of 3  dB Bandwidth, Data Rate, BER, and Number of Measured Samples of Triple-Cation Photodetectors with Varied Active Layer Thickness

      Perov. Thickness [nm]Bandwidth [kHz]Data Rate [Mbps]BERSample Size
      60114±531±42.8×10310
      170211±7132±53.3×1038
      250259±3049±43.0×10313
      640367±10043±73.0×10312
      840386±5524±13.2×10314
      965400±7333±43.0×10321
    • Table 4. Coefficients (B1,B2) and Lifetimes (τ1,τ2) Extracted from the Two-Exponential Fit of TRPL Data for All Perovskite Devices of Varied Active Layer Thicknessa

      View table
      View in Article

      Table 4. Coefficients (B1,B2) and Lifetimes (τ1,τ2) Extracted from the Two-Exponential Fit of TRPL Data for All Perovskite Devices of Varied Active Layer Thicknessa

      Perov. Thickness [nm]B1[103]τ1 [ns]B2[103]τ2 [ns]
      6091.32.04.68.2
      170101.34.210.711.5
      2509.08.10.228.1
      6407.118.21.583.4
      8405.523.63.870.7
      9655.359.43.9125.5
    • Table 5. Measured Device Resistance, Calculated Capacitance, and RC Time Constant for Triple-Cation Devices of Varied Active Layer Thickness Using Two Methods: Bandwidth Estimation and Transient Photovoltage

      View table
      View in Article

      Table 5. Measured Device Resistance, Calculated Capacitance, and RC Time Constant for Triple-Cation Devices of Varied Active Layer Thickness Using Two Methods: Bandwidth Estimation and Transient Photovoltage

      Perov. Thickness [nm]Bandwidth EstimationTransient Photovoltage
      RC=1/(2πf3dB)[ns]Cell Resistance [Ω]Capacitance [nF]Fitted RC Time Const. [ns]Calculated f3dB[kHz]
      6014852715.51140142
      1705691384.1570285
      2503851352.9390415
      6402931871.6280582
      8402642391.1260606
      9652212690.8230700
    • Table 6. Spin Coating Conditions for the Triple-Cation Perovskite Film Formationa

      View table
      View in Article

      Table 6. Spin Coating Conditions for the Triple-Cation Perovskite Film Formationa

      Perovskite Thickness [nm]Precursor Solution Concentration [mol/L]Spin-Coating Condition
      600.256000 r/min (40 s)
      1700.251000 r/min (40 s)
      2500.52000 r/min (10  s)+6000  r/min (30 s)
      64012000 r/min (10  s)+6000  r/min (30 s)
      84011400 r/min (40 s)
      96511000 r/min (40 s)
    Tools

    Get Citation

    Copy Citation Text

    Natalie A. Mica, Rui Bian, Pavlos Manousiadis, Lethy K. Jagadamma, Iman Tavakkolnia, Harald Haas, Graham A. Turnbull, Ifor D. W. Samuel, "Triple-cation perovskite solar cells for visible light communications," Photonics Res. 8, A16 (2020)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: PEROVSKITE PHOTONICS

    Received: Apr. 3, 2020

    Accepted: May. 25, 2020

    Published Online: Jul. 8, 2020

    The Author Email: Harald Haas (H.Haas@ed.ac.uk), Graham A. Turnbull (gat@st-andrews.ac.uk), Ifor D. W. Samuel (idws@st-andrews.ac.uk)

    DOI:10.1364/PRJ.393647

    Topics