Acta Optica Sinica, Volume. 44, Issue 13, 1310001(2024)
Self-Supervised Enhancement of Low-Light Images Based on Blind Spot Networks
Fig. 8. Visual comparison of processing results of low-light images by different algorithms. (a) Input image; (b) LIME algorithm[27]; (c) SIRE algorithm[28]; (d) NPE algorithm[29]; (e) EG algorithm[26]; (f) Zero-DCE algorithm[25]; (g) RetinexNet algorithm[6]; (h) DUPE algorithm[32]; (i) LLFLow algorithm[30]; (j) GLADNet algorithm[7]; (k) SCI algorithm[31]; (l) proposed algorithm
Fig. 9. Visual comparison of processing results of real low-light images by different algorithms. (a) Input image; (b) LIME algorithm[27]; (c) SIRE algorithm[28]; (d) RetinexNet algorithm[6]; (e) LLFLow algorithm[30]; (f) EG algorithm[26]; (i) Zero-DCE algorithm[25]; (j) KinD++ algorithm[8]; (k) proposed algorithm
Fig. 10. Ablation experiments with different loss functions. (a) LDBSNet; (b) Lspa; (c) Lcol; (d) Ltv; (e) DBSNet; (f) real scene
|
|
|
Get Citation
Copy Citation Text
Yong Chen, Jinliang Zhang, Huanlin Liu, Kaixin Shao, Shangming Chen, Hangying Xiong, Yourui Zhang. Self-Supervised Enhancement of Low-Light Images Based on Blind Spot Networks[J]. Acta Optica Sinica, 2024, 44(13): 1310001
Category: Image Processing
Received: Jan. 23, 2024
Accepted: Mar. 15, 2024
Published Online: Jul. 4, 2024
The Author Email: Yong Chen (chenyong@cqupt.edu.cn)
CSTR:32393.14.AOS240549