Acta Optica Sinica, Volume. 31, Issue 9, 900119(2011)

Two-Dimensional Silicon Photonic Crystal Slab Devices

Li Zhiyuan* and Gan Lin
Author Affiliations
  • [in Chinese]
  • show less
    References(61)

    [1] [1] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987, 58(20): 2059~2062

    [2] [2] S. John. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett., 1987, 58(23): 2486~2489

    [3] [3] J. Valentine, S. Zhang, T. Zentgraf et al.. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 2008, 455(7211): 376~379

    [4] [4] J. Yao, Z. W. Liu, Y. M. Liu et al.. Optical negative refraction in bulk metamaterials of nanowires[J]. Science, 2008, 321(5891): 930

    [5] [5] J. D. Joannopoulos. Photonic Crystals: Molding the Flow of Light[M]. 2nd ed. Princeton: Princeton University Press, 2008

    [6] [6] Z. Y. Li, Y. Z. Liu, R. J. Liu et al.. Γ-M waveguides in two-dimensional triangular-lattice photonic crystal slabs[J]. Opt. Express, 2008, 16(26): 21483~21491

    [7] [7] Y. A. Vlasov, M. O′boyle, H. F. Hamann et al.. Active control of slow light on a chip with photonic crystal waveguides[J]. Nature, 2005, 438(7064): 65~69

    [8] [8] S. Z. Han, J. Tian, C. Ren et al.. A Y-branch photonic crystal slab waveguide with an ultrashort interport interval[J]. Chin. Phys. Lett., 2005, 22(8): 1934~1936

    [9] [9] Y. Akahane, T. Asano, B. S. Song et al.. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 2003, 425(6961): 944~947

    [10] [10] E. Kuramochi, H. Taniyama, T. Tanabe et al.. Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings[J]. Opt. Express, 2010, 18(15): 15859~15869

    [11] [11] M. Notomi, E. Kuramochi, H. Taniyama. Ultrahigh-Q nanocavity with 1D photonic gap[J]. Opt. Express, 2008, 16(15): 11095~11102

    [12] [12] M. Notomi, H. Taniyama. On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning[J]. Opt. Express, 2008, 16(23): 18657~18666

    [13] [13] R. Zengerle. Light-propagation in singly and doubly periodic planar wave guides[J]. J. Modern Opt., 1987, 34(12): 1589~1617

    [14] [14] C. Luo, S. G. Johnson, J. D. Joannopoulos et al.. All-angle negative refraction without negative effective index[J]. Phys. Rev. B, 2002, 65(20): 201104

    [15] [15] H. Kosaka, T. Kawashima, A. Tomita et al.. Self-collimating phenomena in photonic crystals[J]. Appl. Phys. Lett., 1999, 74(9): 1212~1214

    [16] [16] X. F. Yu, S. H. Fan. Bends and splitters for self-collimated beams in photonic crystals[J]. Appl. Phys. Lett., 2003, 83(16): 3251~3253

    [17] [17] H. Kosaka, T. Kawashima, A. Tomita et al.. Superprism phenomena in photonic crystals[J]. Phys. Rev. B, 1998, 58(16): 10096~10099

    [18] [18] L. Gan, Y. Z. Liu, J. Y. Li et al.. Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 μm[J]. Opt. Express, 2009, 17(12): 9962~9970

    [19] [19] T. Baba, T. Matsumoto, M. Echizen. Finite difference time domain study of high efficiency photonic crystal superprisms[J]. Opt. Express, 2004, 12(19): 4608~4613

    [20] [20] A. Berrier, M. Mulot, M. Swillo et al.. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal[J]. Phys. Rev. Lett., 2004, 93(7): 073902

    [21] [21] R. Chatterjee, N. C. Panoiu, K. Liu et al.. Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range[J]. Phys. Rev. Lett., 2008, 100(18): 187401

    [22] [22] S. G. Johnson, S. H. Fan, P. R. Villeneuve et al.. Guided modes in photonic crystal slabs[J]. Phys. Rev. B, 1999, 60(8): 5751~5758

    [23] [23] O. Painter, R. K. Lee, A. Scherer et al.. Two-dimensional photonic band-gap defect mode laser[J]. Science, 1999, 284(5421): 1819~1821

    [24] [24] S. Noda, A. Chutinan, M. Imada. Trapping and emission of photons by a single defect in a photonic bandgap structure[J]. Nature, 2000, 407(6804): 608~610

    [25] [25] S. J. Mcnab, N. Moll, Y. A. Vlasov. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides[J]. Opt. Express, 2003, 11(22): 2927~2939

    [26] [26] M. Notomi, A. Shinya, S. Mitsugi et al.. Waveguides, resonators and their coupled elements in photonic crystal slabs[J]. Opt. Express, 2004, 12(8): 1551~1561

    [27] [27] M. Born, E. Wolf, A. B. Bhatia. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. 7th (expanded) ed., Cambridge: Cambridge University Press, 1999

    [28] [28] C. Kittel. Introduction to Solid State Physics[M]. 8th ed. Hoboken: Wiley, 2005

    [29] [29] K. M. Ho, C. T. Chan, C. M. Soukoulis. Existence of a photonic gap in periodic dielectric structures[J]. Phys. Rev. Lett., 1990, 65(25): 3152~3155

    [30] [30] S. Johnson, J. Joannopoulos. Block-iterative frequency-domain methods for Maxwell′s equations in a planewave basis[J]. Opt. Express, 2001, 8(3): 173~190

    [31] [31] Z. Y. Li, J. Wang, B. Y. Gu. Creation of partial band gaps in anisotropic photonic-band-gap structures[J]. Phys. Rev. B, 1998, 58(7): 3721~3729

    [32] [32] J. B. Pendry. Photonic band structures[J]. J. Modern Opt., 1994, 41(2): 209~229

    [33] [33] A. Taflove, S. C. Hagness. Computational Electrodynamics: the Finite-Difference Time-Domain Method[M]. 3rd ed., Boston: Artech House, 2005

    [34] [34] C. T. Chan, Q. L. Yu, K. M. Ho. Order-N spectral method for electromagnetic-waves[J]. Phys. Rev. B, 1995, 51(23): 16635~16642

    [35] [35] N. A. Nicorovici, R. C. Mcphedran, L. C. Botten. Photonic band-gaps for arrays of perfectly conducting cylinders[J]. Phys. Rev. E, 1995, 52(1): 1135~1145

    [36] [36] L. M. Li, Z. Q. Zhang. Multiple-scattering approach to finite-sized photonic band-gap materials[J]. Phys. Rev. B, 1998, 58(15): 9587~9590

    [37] [37] Z. Y. Li, L. L. Lin. Photonic band structures solved by a plane-wave-based transfer-matrix method[J]. Phys. Rev. E, 2003, 67(4): 046607

    [38] [38] Z. Y. Li, K. M. Ho. Application of structural symmetries in the plane-wave-based transfer-matrix method for three-dimensional photonic crystal waveguides[J]. Phys. Rev. B, 2003, 68(24): 245117

    [39] [39] L. L. Lin, Z. Y. Li, K. M. Ho. Lattice symmetry applied in transfer-matrix methods for photonic crystals[J]. J. Appl. Phys., 2003, 94(2): 811~821

    [40] [40] Z. Y. Li, K. M. Ho. Light propagation in semi-infinite photonic crystals and related waveguide structures[J]. Phys. Rev. B, 2003, 68(15): 155101

    [41] [41] M. Che, Z. Y. Li. Analysis of surface modes in photonic crystals by a plane-wave transfer-matrix method[J]. J. Opt. Soc. Am. A-Optics Image Science and Vision, 2008, 25(9): 2177~2184

    [42] [42] M. Che, Z. Y. Li. Analysis of photonic crystal waveguide bends by a plane-wave transfer-matrix method[J]. Phys. Rev. B, 2008, 77(12): 125138

    [43] [43] Z. Y. Li, K. M. Ho. Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals[J]. Phys. Rev. B, 2003, 67(16): 165104

    [44] [44] J. Y. Li, Z. Y. Li, H. F. Yang et al.. Scanning near-field optical microscopy study of metallic square hole array nanostructures[J]. J. Appl. Phys., 2008, 104(11): 114303

    [45] [45] J. Y. Li, Y. L. Hua, J. X. Fu et al.. Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films[J]. J. Appl. Phys., 2010, 107(7): 073101

    [46] [46] J. X. Fu, R. J. Liu, Z. Y. Li. Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces[J]. Appl. Phys. Lett., 2010, 97(4): 041112

    [47] [47] J. X. Fu, R. J. Liu, Z. Y. Li. Experimental demonstration of tunable gyromagnetic photonic crystals controlled by dc magnetic fields[J]. Europhys. Lett., 2010, 89(6): 064003

    [48] [48] A. F. Oskooi, D. Roundy, M. Ibanescu et al.. MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method[J]. Comput. Phys. Commun., 2010, 181(3): 687~702

    [49] [49] Z. Y. Li, C. Z. Zhou, Y. Z. Liu. Waveguide bend of 90 degrees in two-dimensional triangular lattice silicon photonic crystal slabs[J]. Chin. Phys. Lett., 2010, 27(8): 084203

    [50] [50] C. Ren, J. Tian, S. Feng et al.. High resolution three-port filter in two dimensional photonic crystal slabs[J]. Opt. Express, 2006, 14(21): 10014~10020

    [51] [51] Y. Akahane, T. Asano, B. S. Song et al.. Fine-tuned high-Q photonic-crystal nanocavity[J]. Opt. Express, 2005, 13(4): 1202~1214

    [52] [52] Z. Y. Li, Y. Z. Liu, S. A. Feng et al.. Multichannel filters with shape designing in two-dimensional photonic crystal slabs[J]. J. Appl. Phys., 2007, 102(4): 043102

    [53] [53] Y. Z. Liu, R. J. Liu, S. A.Feng et al.. Multichannel filters via Γ-M and Γ-K waveguide coupling in two-dimensional triangular-lattice photonic crystal slabs[J]. Appl. Phys. Lett., 2008, 93(24): 241107

    [54] [54] K. Hennessy, A. Badolato, M. Winger et al.. Quantum nature of a strongly coupled single quantum dot–cavity system[J]. Nature, 2007, 445(7130): 896~899

    [55] [55] T. Yoshie, A. Scherer, J. Hendrickson et al.. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity[J]. Nature, 2004, 432(7014): 200~203

    [56] [56] D. Englund, A. Faraon, I. Fushman et al.. Controlling cavity reflectivity with a single quantum dot[J]. Nature, 2007, 450(7171): 857~861

    [57] [57] Y. Akahane, T. Asano, B. Song et al.. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 2003, 425(6961): 944~947

    [58] [58] Liu Yazhao, Li Zhiyuan. Photonic crystal integrated optical devices[J]. Physics, 2008, 37(9): 658~665

    CLP Journals

    [1] Wu Yulong, Sun Xiaohong, Liu Wei. Investigation on Defect-Mode Property of Ten-Fold Photonic Quasicrystal[J]. Laser & Optoelectronics Progress, 2013, 50(6): 62601

    [2] Zhou Xingping, Shu Jing, Lu Binjie, Sun Fengxing. Two-Wavelength Division Demultiplexer Based on Triangular Lattice Photonic Crystal Resonant Cavity[J]. Acta Optica Sinica, 2013, 33(1): 123001

    [3] Han Jintao, Zhang Wei, Wei Fengjuan, Wang Xianwang, Zhang Liang, Zhang Peiqing, Dai Shixun. Investigation of Wideband Slow Light in Ge20Sb15Se65 Photonic Crystal Slab Waveguides[J]. Chinese Journal of Lasers, 2015, 42(6): 606002

    [4] Yang Hui, Wang Zhiyong, Zhang Wei, Wang Wenchao. Properties of All-Optical Switch Based on Two-Dimensional Nonlinear Photonic Crystals[J]. Acta Optica Sinica, 2012, 32(10): 1016003

    [5] Zhou Xingping, Shu Jing. Novel 1×3 Splitter Based on Photonic Crystal Self-Collimation Effect[J]. Acta Optica Sinica, 2013, 33(4): 423002

    Tools

    Get Citation

    Copy Citation Text

    Li Zhiyuan, Gan Lin. Two-Dimensional Silicon Photonic Crystal Slab Devices[J]. Acta Optica Sinica, 2011, 31(9): 900119

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jul. 15, 2011

    Accepted: --

    Published Online: Aug. 29, 2011

    The Author Email: Zhiyuan Li (lizy@aphy.iphy.ac.cn)

    DOI:10.3788/aos201131.0900119

    Topics