Chinese Journal of Lasers, Volume. 49, Issue 14, 1402208(2022)
Thermal Behavior of Molten Pool for Laser Directed Energy Deposition of 316L/Inconel 718 Multi-Materials
Fig. 2. Finite element model of 316L/Inconel 718. (a) Model and dimension; (b) meshing
Fig. 4. Microscopic morphologies of 316L and Inconel 718 powders. (a)(b) 316L; (c)(d) Inconel 718
Fig. 5. Temperature distribution cloud diagrams of 316L/Inconel 718 during LDED when P316L=1000 W, v316L=4 mm/s, PIN718=1100 W, and vIN718=10 mm/s. (a) Transient temperature distribution cloud diagram at point A; (b) temperature cloud diagram at point A on 316L layer surface; (c) transient temperature distribution cloud diagram at point B; (d) temperature cloud diagram at surface point B on Inconel 718 layer surface
Fig. 6. Temperature distribution in Z direction of 316L/Inconel 718 LDED under different process parameters for laser direct energy deposition in center of Inconel 718 layer. (a) Different scanning speeds (PIN718=1100 W); (b) different laser powers (vIN718=10 mm/s)
Fig. 7. Temperature gradient distributions in Z direction of 316L/Inconel 718 under different process parameters for laser direct energy deposition in center of Inconel 718 layer. (a) Different scanning speeds (PIN718=1100 W); (b) different laser powers (vIN718=10 mm/s)
Fig. 8. Maximum temperature of molten pool and liquid phase lifetime in 316L layer under different process parameters for laser direct energy deposition in center of Inconel 718 layer. (a) Different laser powers (vIN718=10 mm/s); (b) different scanning speeds (PIN718=1100 W)
Fig. 9. Cross-sectional morphologies of molten pool and remelting size of 316L layer deposited in center of Inconel 718 layer with different laser powers (vIN718=10 mm/s). (a) PIN718=900 W; (b) PIN718=1100 W; (c) PIN718=1300 W; (d) PIN718=1500 W; (e) Rd versus laser power
Fig. 10. Cross-sectional morphologies of molten pool and remelting size of 316L layer deposited in center of Inconel 718 layer with different scanning speeds when PIN718=1100 W. (a) vIN718=7 mm/s; (b) vIN718=10 mm/s; (c) vIN718=14 mm/s; (d) vIN718=20 mm/s; (e) Rd versus scanning speed
Fig. 11. Cross-sectional metallographic diagrams of molten pool under different experimental parameters. (a) PIN718=900 W,vIN718=10 mm/s; (b) PIN718=1100 W,vIN718=10 mm/s; (c) PIN718=1100 W,vIN718=7 mm/s
|
|
|
Get Citation
Copy Citation Text
Hao Zhang, Donghua Dai, Xinyu Shi, Yanze Li, Luhao Yuan, Guangjing Huang, Dongdong Gu. Thermal Behavior of Molten Pool for Laser Directed Energy Deposition of 316L/Inconel 718 Multi-Materials[J]. Chinese Journal of Lasers, 2022, 49(14): 1402208
Received: Nov. 26, 2021
Accepted: Feb. 18, 2022
Published Online: Jun. 14, 2022
The Author Email: Dai Donghua (donghuadai@nuaa.edu.cn)