Optical Technique, Volume. 47, Issue 1, 56(2021)

Fall detection algorithm based on depth vision sensor and convolution neural network

ZHU Yan*, ZHANG Yaping, LI Shusheng, LI Weimin, and LIU Yashu
Author Affiliations
  • [in Chinese]
  • show less
    References(11)

    [4] [4] Li Y, Ho K C, Popescu M. Efficient source separation algorithms foracoustic fall detection using a microsoft kinect[J]. IEEE Transactions on Biomedical Engineering,2014,61(3):745-755.

    [5] [5] Khan M S, Yu M, Feng P, et al. An unsupervised acoustic fall detection system using source separation for sound interferencesuppression[J]. Signal Processing,2015,110:199-210.

    [6] [6] Ludovic Minvielle, Mounir Atiq, Renan Serra, et al. Fall detection using smart floor sensor andsupervised learning[C]∥2017 39th Annual InternationalConference of the IEEE Engineering in Medicine andBiology Society(EMBC).Korea:IEEE,2017:3445-3448.

    [9] [9] Ghen K H, Hsu Y W, Yang J J, et al. Enhanced characterization of an accelerometer-based fall detection algorithm using a repository[J]. Instrumentation Science and Technology,2016,11(6):382-391.

    [10] [10] Yu Miao, Gong Liyun, Clifford Ross, et al. A monocular camera based person-specific fall detection system exploiting deep neural network aided unsupervised[C]∥IEEE International Conference on Acoustics, Speech, and Signal Processing,2019.

    [11] [11] Rasa Patsadu, Bunthitwatanapa, Piyapat Dajpratham, et al. Fall motion detection with fall severity level estimation by mining kinect 3D datastream[J]. The International Arab Journal of Information Technology,2018,15(3):378-388.

    [13] [13] Takuma Sumiya, Yutaka Matsubara, Miyuki Nakano, et al. A mobile robot for fall detection for elderly-care[J]. Procedia Computer Science,2015,60:870-880.

    [17] [17] Mongia M, Kumar K, Erraqabi A, et al. On random weights for texture generation in one layer CNNS[C]∥ICASSP IEEE Interanational Conference on Acoustics. New Orleans:IEEE,2017:2207-2211.

    [18] [18] Vaishna S. Kavan Gangadhar Acharya, B Sandeep, et al. Wearable sensor-based human fall detection wireless system[J]. Wireless Communication Networks and Internet of things,2018,493:217-234.

    [19] [19] D Triantafyllou, S Krinidis, D Ioannidis, et al.A real-time fall detection system for maintenance activities in indoor environments[J]. IFAC-Papers On Line,2016,49(28):286-290.

    [20] [20] Leila Panahi, Vahid Ghods. Human fall detection using machine vision techniques on RGB-D images[J].Biomedical Signal Processing and Control,2018,44:146-153.

    Tools

    Get Citation

    Copy Citation Text

    ZHU Yan, ZHANG Yaping, LI Shusheng, LI Weimin, LIU Yashu. Fall detection algorithm based on depth vision sensor and convolution neural network[J]. Optical Technique, 2021, 47(1): 56

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 1, 2020

    Accepted: --

    Published Online: Apr. 12, 2021

    The Author Email: Yan ZHU (xiaoyanzhu1985@163.com)

    DOI:

    CSTR:32186.14.

    Topics