Laser & Optoelectronics Progress, Volume. 62, Issue 11, 1127018(2025)

Development of Zero-Magnetic-Field Achieving Techniques for Spin-Exchange Relaxation-Free Effect

Mengyuan Cui1,2, Xuefeng Wang1,2、*, Yicheng Deng1,2, and Huanxue He1,2
Author Affiliations
  • 1Beijing Institute of Aerospace Control Devices, Beijing 100854, China
  • 2Quantum Engineering Research Center of China Aerospace Science and Technology Corporation, Beijing 100094, China
  • show less
    Figures & Tables(11)
    Spin-exchange collision distribution levels between potassium atoms[10]
    Effects of spin-exchange collision frequency on the atomic Larmor precession and spectrum[2]
    Design of ferrite shielding layer structures. (a) Multi-annulus[27]; (b) cylindrical structure with removable end caps[30]; (c) cubic structure[29]
    Illustration showing the device and compensation effect of the stepwise convergence[41]
    Magnetic field compensation device and Lorentz curve[47]
    Illustration of the cross-magnetic modulation compensation[38]
    Illustration of the improved magnetic separation modulation[56]
    Optical structure and magnetic configuration of parametric modulation[58]
    • Table 1. Collision cross sections between alkali metal atoms and between alkali metal atoms and helium or nitrogen gas[10]

      View table

      Table 1. Collision cross sections between alkali metal atoms and between alkali metal atoms and helium or nitrogen gas[10]

      Alkali metal atomσseselfσsdselfσsdN2σsdHe
      K1.8×10-141.0×10-187.9×10-238.0×10-25
      Rb1.9×10-141.6×10-171.0×10-229×10-24
      Cs2.1×10-142.0×10-165.5×10-222.8×10-23
    • Table 2. Shielding performance comparison of design schemes corresponding to different shielding materials

      View table

      Table 2. Shielding performance comparison of design schemes corresponding to different shielding materials

      Shielding materialDesign proposalShielding factorMagnetic induction intensity of residual magnetic /nTMagnetic noise /(fT/Hz1/2
      PermalloyStructureSpherical shell18

      47619 (x

      52631 (y

      21739 (z

      2.1 (x

      1.9 (y

      4.6 (z

      Cylindrical shape194.4×1040.615
      Spindle-shaped203.7×10715
      Permalloy and ferriteNoiseestimationFluctuations dissipation240.75
      Finite element270.30.70
      Grain size280.71
      StructureCubic shape29

      0.5 (x

      1.72 (y

      1.6 (z

      2.62
      Multi-annulus270.70

      Permalloy

      and nanocrystalline alloys

      StructureCylindricalshape34-3614.78
      11.4
      52612
      Cubic shape3725
    • Table 3. Comparisons of technologies for achieving zero-magnetic-field environments

      View table

      Table 3. Comparisons of technologies for achieving zero-magnetic-field environments

      TechnologyImplementation methodAdvantageShortcoming
      Passive shieldingHigh permeability materialRemarkable shielding effectLimited by material; poor flexibility
      Active compensationCurrent source driving

      Small size;

      high flexibility

      Triaxial magnetic crosstalk coupling;

      low compensation accuracy

      Combination of both

      High sensitivity;

      strong environmental adaptability

      Large volume;

      complex system design

    Tools

    Get Citation

    Copy Citation Text

    Mengyuan Cui, Xuefeng Wang, Yicheng Deng, Huanxue He. Development of Zero-Magnetic-Field Achieving Techniques for Spin-Exchange Relaxation-Free Effect[J]. Laser & Optoelectronics Progress, 2025, 62(11): 1127018

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Jan. 9, 2025

    Accepted: Feb. 14, 2025

    Published Online: May. 29, 2025

    The Author Email: Xuefeng Wang (xuefeng_wang@sina.cn)

    DOI:10.3788/LOP250477

    CSTR:32186.14.LOP250477

    Topics