Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1655(2025)
Strengthening and Thin-Filming of Garnet-Type Solid-State Electrolyte Ceramic Electrolyte for All-Solid-State Lithium Batteries
[1] [1] MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater, 2017, 2(4): 16103.
[2] [2] CHEN R S, LI Q H, YU X Q, et al. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces[J]. Chem Rev, 2020, 120(14): 6820–6877.
[3] [3] ZHANG J, JIN J, SHENG O W, et al. Achieving higher critical current density in LGPS-based lithium metal batteriesviaa synergistic interlayer for physical inhibition and chemical scavenging of lithium dendrites[J]. ACS Appl Mater Interfaces, 2024, 16(44): 60376–60386.
[4] [4] DUAN H, YIN Y X, SHI Y, et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers[J]. J Am Chem Soc, 2018, 140(1): 82–85.
[5] [5] SUO L M, XUE W J, GOBET M, et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries[J]. Proc Natl Acad Sci USA, 2018, 115(6): 1156–1161.
[6] [6] ZHA W P, RUAN Y D, WEN Z Y. A Janus Li1.5Al0.5Ge1.5(PO4)3 with high critical current density for high-voltage lithium batteries[J]. Chem Eng J, 2022, 429: 132506.
[7] [7] WAN Z P, LEI D N, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Adv Funct Mater, 2019, 29(1): 1805301.
[8] [8] WU J Y, RAO Z X, CHENG Z X, et al. Ultrathin, flexible polymer electrolyte for cost-effective fabrication of all-solid-state lithium metal batteries[J]. Adv Energy Mater, 2019, 9(46): 1902767.
[9] [9] CAI M L, JIN J, XIU T P, et al.In-situconstructed lithium-salt lithiophilic layer inducing bi-functional interphase for stable LLZO/Li interface[J]. Energy Storage Mater, 2022, 47: 61–69.
[10] [10] SEINO Y, OTA T, TAKADA K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy Environ Sci, 2014, 7(2): 627–631.
[11] [11] LIANG J W, LI X N, ADAIR K R, et al. Metal halide superionic conductors for all-solid-state batteries[J]. Acc Chem Res, 2021, 54(4): 1023–1033.
[12] [12] ZHANG X, LIU T, ZHANG S F, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. J Am Chem Soc, 2017, 139(39): 13779–13785.
[13] [13] ZHANG K, WU F, WANG X R, et al. 8.5 μm-thick flexible-rigid hybrid solid–electrolyte/lithium integration for air-stable and interface- compatible all-solid-state lithium metal batteries (adv. energy mater. 24/2022)[J]. Adv Energy Mater, 2022, 12(24): 2270100.
[14] [14] ZHAO J L, WANG X L, WEI T T, et al. Current challenges and perspectives of garnet-based solid-state electrolytes[J]. J Energy Storage, 2023, 68: 107693.
[15] [15] XU L, LU Y, ZHAO C Z, et al. Toward the scale-up of solid-state lithium metal batteries: The gaps between lab-level cells and practical large-format batteries[J]. Adv Energy Mater, 2021, 11(4): 2002360.
[16] [16] ZHA W P, LI W W, RUAN Y D, et al.In situfabricated ceramic/polymer hybrid electrolyte with vertically aligned structure for solid-state lithium batteries[J]. Energy Storage Mater, 2021, 36: 171–178.
[17] [17] JIANG Z Y, WANG S Q, CHEN X Z, et al. Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries[J]. Adv Mater, 2020, 32(6): 1906221.
[18] [18] JIANG T L, HE P G, WANG G X, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J]. Adv Energy Mater, 2020, 10(12): 1903376.
[19] [19] RUAN Y D, LU Y, HUANG X, et al. Acid induced conversion towards a robust and lithiophilic interface for Li–Li7La3Zr2O12 solid-state batteries[J]. J Mater Chem A, 2019, 7(24): 14565–14574.
[20] [20] LI W W, SUN C Z, JIN J, et al. Realization of the Li+ domain diffusion effectviaconstructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries[J]. J Mater Chem A, 2019, 7(48): 27304–27312.
[21] [21] CAI M L, LU Y, YAO L, et al. Robust Conversion-Type Li/Garnet interphases from metal salt solutions[J]. Chem Eng J, 2021, 417: 129158.
[22] [22] XU L Q, LI J Y, DENG W T, et al. Garnet solid electrolyte for advanced all-solid-state Li batteries[J]. Adv Energy Mater, 2021, 11(2): 2000648.
[23] [23] WANG D W, ZHU C B, FU Y P, et al. Interfaces in garnet-based all-solid-state lithium batteries[J]. Adv Energy Mater, 2020, 10(39): 2001318.
[24] [24] WANG L C, WU J X, BAO C S, et al. Interfacial engineering for high-performance garnet-based solid-state lithium batteries[J]. SusMat, 2024, 4(1): 72–105.
[25] [25] YU S, SIEGEL D J. Grain boundary softening: A potential mechanism for lithium metal penetration through stiff solid electrolytes[J]. ACS Appl Mater Interfaces, 2018, 10(44): 38151–38158.
[26] [26] HAN F D, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nat Energy, 2019, 4: 187–196.
[27] [27] XIE X W, XING J J, HU D L, et al. Lithium expulsion from the solid-state electrolyte Li6.4La3Zr1.4Ta0.6O12 by controlled electron injection in a SEM[J]. ACS Appl Mater Interfaces, 2018, 10(6): 5978–5983.
[28] [28] CAO D X, ZHAO Y Y, SUN X, et al. Processing strategies to improve cell-level energy density of metal sulfide electrolyte-based all-solid- state Li metal batteries and beyond[J]. ACS Energy Lett, 2020, 5(11): 3468–3489.
[29] [29] PAOLELLA A, LIU X, DAALI A, et al. Enabling high-performance NASICON-based solid-state lithium metal batteries towards practical conditions[J]. Adv Funct Mater, 2021, 31(30): 2102765.
[30] [30] ZHENG C J, LU Y, SU J M, et al. Grain boundary engineering enabled high-performance garnet-type electrolyte for lithium dendrite free lithium metal batteries[J]. Small Methods, 2022, 6(9): e2200667.
[31] [31] SONG Y L, YANG L Y, ZHAO W G, et al. Revealing the short-circuiting mechanism of garnet-based solid-state electrolyte[J]. Adv Energy Mater, 2019, 9(21): 1900671.
[32] [32] XU S M, MCOWEN D W, WANG C W, et al. Three-dimensional, solid-state mixed electron-ion conductive framework for lithium metal anode[J]. Nano Lett, 2018, 18(6): 3926–3933.
[33] [33] XU S M, MCOWEN D W, ZHANG L, et al. All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture[J]. Energy Storage Mater, 2018, 15: 458–464.
[34] [34] ALEXANDER G V, SHI C M, O’NEILL J, et al. Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture[J]. Nat Mater, 2023, 22: 1136–1143.
[35] [35] CHENG L, CHEN W, KUNZ M, et al. Effect of surface microstructure on electrochemical performance of garnet solid electrolytes[J]. ACS Appl Mater Interfaces, 2015, 7(3): 2073–2081.
[36] [36] BOTROS M, DJENADIC R, CLEMENS O, et al. Field assisted sintering of fine-grained Li7–3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance[J]. J Power Sources, 2016, 309: 108–115.
[37] [37] RANGASAMY E, WOLFENSTINE J, SAKAMOTO J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12[J]. Solid State Ion, 2012, 206: 28–32.
[38] [38] HUANG W L, ZHAO N, BI Z J, et al. Can we find solution to eliminate Li penetration through solid garnet electrolytes?[J]. Mater Today Nano, 2020, 10: 100075.
[39] [39] SAMSON A J, HOFSTETTER K, BAG S, et al. A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries[J]. Energy Environ Sci, 2019, 12(10): 2957–2975.
[40] [40] TANTRATIAN K, YAN H H, ELLWOOD K, et al. Unraveling the Li penetration mechanism in polycrystalline solid electrolytes[J]. Adv Energy Mater, 2021, 11(13): 2003417.
[41] [41] LIU X M, GARCIA-MENDEZ R, LUPINI A R, et al. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes[J]. Nat Mater, 2021, 20(11): 1485–1490.
[42] [42] BIAO J, HAN B, CAO Y D, et al. Inhibiting formation and reduction of Li2CO3 to LiCx at grain boundaries in garnet electrolytes to prevent Li penetration[J]. Adv Mater, 2023, 35(12): 2208951.
[43] [43] LU Y, HUANG X, RUAN Y D, et al. Anin situ element permeation constructed high endurance Li–LLZO interface at high current densities[J]. J Mater Chem A, 2018, 6(39): 18853–18858.
[44] [44] ZHANG L Q, YANG T T, DU C C, et al. Lithium whisker growth and stress generation in anin situatomic force microscope-environmental transmission electron microscope set-up[J]. Nat Nanotechnol, 2020, 15(2): 94–98.
[45] [45] NASIR M, PARK J Y, HEO P, et al. Li–La–Zr–O garnets with high Li-ion conductivity and air-stability by microstructure-engineering[J]. Adv Funct Mater, 2023, 33(35): 2303397.
[46] [46] KATAOKA K, NAGATA H, AKIMOTO J. Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application[J]. Sci Rep, 2018, 8(1): 9965.
[47] [47] MARK WELLER J, WHETTEN J A, CHAN C K. Nonaqueous polymer combustion synthesis of cubic Li7La3Zr2O12 nanopowders[J]. ACS Appl Mater Interfaces, 2020, 12(1): 953–962.
[48] [48] XU D, SU J M, JIN J, et al.In situgenerated fireproof gel polymer electrolyte with Li6.4Ga0.2La3Zr2O12 As initiator and ion-conductive filler[J]. Adv Energy Mater, 2019, 9(25): 1900611.
[49] [49] HUANG X, LIU C, LU Y, et al. A Li-Garnet composite ceramic electrolyte and its solid-state Li–S battery[J]. J Power Sources, 2018, 382: 190–197.
[50] [50] WOLFENSTINE J, RATCHFORD J, RANGASAMY E, et al. Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12[J]. Mater Chem Phys, 2012, 134(2/3): 571–575.
[51] [51] YAMADA H, ITO T, HONGAHALLY BASAPPA R. Sintering mechanisms of high-performance garnet-type solid electrolyte densified by spark plasma sintering[J]. Electrochim Acta, 2016, 222: 648–656.
[52] [52] BARAI P, FISTER T, LIANG Y J, et al. Investigating the calcination and sintering of Li7La3Zr2O12 (LLZO) solid electrolytes using operando synchrotron X-ray characterization and mesoscale modeling[J]. Chem Mater, 2021, 33(12): 4337–4352.
[53] [53] KOKAL I, SOMER M, NOTTEN P H L, et al. Sol–gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure[J]. Solid State Ion, 2011, 185(1): 42–46.
[54] [54] SHAO C Y, LIU H X, YU Z Y, et al. Structure and ionic conductivity of cubic Li7La3Zr2O12 solid electrolyte prepared by chemical co-precipitation method[J]. Solid State Ion, 2016, 287: 13–16.
[55] [55] ROSENKIEWITZ N, SCHUHMACHER J, BOCKMEYER M, et al. Nitrogen-free Sol–gel synthesis of Al-substituted cubic garnet Li7La3Zr2O12 (LLZO)[J]. J Power Sources, 2015, 278: 104–108.
[56] [56] HUANG X, SHEN C, RUI K, et al. Influence of La2Zr2O7 additive on densification and Li+ conductivity for Ta-doped Li7La3Zr2O12 garnet[J]. JOM, 2016, 68(10): 2593–2600.
[57] [57] KIM Y, JO H, ALLEN J L, et al. The effect of relative density on the mechanical properties of hot-pressed cubic Li7La3Zr2O12[J]. J Am Ceram Soc, 2016, 99(4): 1367–1374.
[58] [58] HUANG X, LU Y, GUO H J, et al. None-mother-powder method to prepare dense Li-garnet solid electrolytes with high critical current density[J]. ACS Appl Energy Mater, 2018, 1(10): 5355–5365.
[59] [59] XIANG W Y, MA R T, LIU X Y, et al. Rapid Li compensation toward highly conductive solid state electrolyte film[J]. Nano Energy, 2023, 116: 108816.
[60] [60] ZHANG Y H, CHEN F, TU R, et al. Effect of lithium ion concentration on the microstructure evolution and its association with the ionic conductivity of cubic garnet-type nominal Li7Al0.25La3Zr2O12 solid electrolytes[J]. Solid State Ion, 2016, 284: 53–60.
[61] [61] CHEN S J, NIE L, HU X C, et al. Ultrafast sintering for ceramic-based all-solid-state lithium-metal batteries[J]. Adv Mater, 2022, 34(33): 2200430.
[62] [62] WOLFENSTINE J, RANGASAMY E, ALLEN J L, et al. High conductivity of dense tetragonal Li7La3Zr2O12[J]. J Power Sources, 2012, 208: 193–196.
[63] [63] ZHANG Y H, CHEN F, TU R, et al. Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes[J]. J Power Sources, 2014, 268: 960–964.
[64] [64] XIE H L, LI C L, KAN W H, et al. Consolidating the grain boundary of the garnet electrolyte LLZTO with Li3BO3 for high-performance LiNi0.8Co0.1Mn0.1O2/LiFePO4 hybrid solid batteries[J]. J Mater Chem A, 2019, 7(36): 20633–20639.
[65] [65] ROSERO-NAVARRO N C, YAMASHITA T, MIURA A, et al. Effect of sintering additives on relative density and Li-ion conductivity of Nb-doped Li7La3ZrO12 solid electrolyte[J]. J Am Ceram Soc, 2017, 100(1): 276–285.
[66] [66] ZHANG W Q, SUN C W. Effects of CuO on the microstructure and electrochemical properties of garnet-type Li6.3La3Zr1.65W0.35O12 solid electrolyte[J]. J Phys Chem Solids, 2019, 135: 109080.
[67] [67] HUANG X, LU Y, SONG Z, et al. Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte[J]. Energy Storage Mater, 2019, 22: 207–217.
[68] [68] DOBRETSOV E A, MATEYSHINA Y G, UVAROV N F. Influence of lithium oxide excess and alumina on grain boundary resistance of Li6.75La3Zr1.75Nb0.25O12 solid electrolyte[J]. Solid State Ion, 2017, 299: 55–59.
[69] [69] ZHENG C J, CHEN Y, DONG H X, et al. Dynamic lithium- compensation mechanism for densification of garnet-type Li7La3Zr2O12 electrolyte by Li2O atmosphere buffer pair[J]. Nano Res, 2024, 17(7): 6184–6191.
[70] [70] HUANG Z Y, LIU K, CHEN L H, et al. Sintering behavior of garnet-type Li6.4La3Zr1.4Ta0.6O12 in Li2CO3 atmosphere and its electrochemical property[J]. Int J Appl Ceram Technol, 2017, 14(5): 921–927.
[71] [71] HUANG X, SONG Z, XIU T P, et al. Searching for low-cost LixMOy compounds for compensating Li-loss in sintering of Li–garnet solid electrolyte[J]. J Materiomics, 2019, 5(2): 221–228.
[72] [72] ZHENG C J, RUAN Y D, SU J M, et al. Grain boundary modification in garnet electrolyte to suppress lithium dendrite growth[J]. Chem Eng J, 2021, 411: 128508.
[73] [73] ZHENG C J, SU J M, SONG Z, et al. Improvement of density and electrochemical performance of garnet-type Li7La3Zr2O12 for solid-state lithium metal batteries enabled by W and Ta co-doping strategy[J]. Mater Today Energy, 2022, 27: 101034.
[74] [74] ZHENG C J, SU J M, SONG Z, et al. Sintering promotion and electrochemical performance of garnet-type electrolyte with Li2CuO2 additive[J]. J Alloys Compd, 2023, 933: 167810.
[75] [75] WU J Y, YUAN L X, ZHANG W X, et al. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries[J]. Energy Environ Sci, 2021, 14(1): 12–36.
[76] [76] YI E, WANG W M, KIEFFER J, et al. Flame made nanoparticles permit processing of dense, flexible, Li+ conducting ceramic electrolyte thin films of cubic-Li7La3Zr2O12 (c-LLZO)[J]. J Mater Chem A, 2016, 4(33): 12947–12954.
[77] [77] YI E, WANG W M, KIEFFER J, et al. Key parameters governing the densification of cubic-Li7La3Zr2O12 Li+ conductors[J]. J Power Sources, 2017, 352: 156–164.
[78] [78] KIM J S, YOON G, KIM S, et al. Surface engineering of inorganic solid-state electrolytesviainterlayers strategy for developing long-cycling quasi-all-solid-state lithium batteries[J]. Nat Commun, 2023, 14(1): 782.
[79] [79] THENUWARA A C, THOMPSON E L, MALKOWSKI T F, et al. Interplay among metallic interlayers, discharge rate, and pressure in LLZO-based lithium–metal batteries[J]. ACS Energy Lett, 2023, 8(10): 4016–4023.
[80] [80] FU K, GONG Y H, HITZ G T, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries[J]. Energy Environ Sci, 2017, 10(7): 1568–1575.
[81] [81] YANG C P, ZHANG L, LIU B Y, et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework[J]. Proc Natl Acad Sci USA, 2018, 115(15): 3770–3775.
[82] [82] HITZ G T, MCOWEN D W, ZHANG L, et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture[J]. Mater Today, 2019, 22: 50–57.
[83] [83] OKUR F, ZHANG H Y, KARABAY D T, et al. Intermediate-stage sintered LLZO scaffolds for Li-garnet solid-state batteries[J]. Adv Energy Mater, 2023, 13(15): 2203509.
[84] [84] BAO C S, ZHENG C J, WU M F, et al. 12 μm-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries[J]. Adv Energy Mater, 2023, 13(13): 2204028.
[85] [85] GOU J R, ZHANG Z, WANG S Q, et al. An ultrahigh modulus gel electrolytes reforming the growing pattern of Li dendrites for interfacially stable lithium-metal batteries[J]. Adv Mater, 2024, 36(7): e2309677.
[86] [86] CHEN L H, HUANG X Z, MA R T, et al. A nanocrystal garnet skeleton-derived high-performance composite solid-state electrolyte membrane[J]. Energy Storage Mater, 2024, 65: 103140.
[87] [87] WANG C W, PING W W, BAI Q, et al. A general method to synthesize and sinter bulk ceramics in seconds[J]. Science, 2020, 368(6490): 521–526.
[88] [88] HONG M, DONG Q, XIE H, et al. Tailoring grain growth and densification toward a high-performance solid-state electrolyte membrane[J]. Mater Today, 2021, 42: 41–48.
[89] [89] WANG R L, DONG Q, WANG C W, et al. High-temperature ultrafast sintering: Exploiting a new kinetic region to fabricate porous solid-state electrolyte scaffolds[J]. Adv Mater, 2021, 33(34): e2100726.
[90] [90] WU Y L, WANG K Y, LIU K, et al. Rapid processing of uniform, thin, robust, and large-area garnet solid electrolyte by atmospheric plasma spraying[J]. Adv Energy Mater, 2023, 13(30): 2300809.
Get Citation
Copy Citation Text
BAO Chengshuai, WEN Jiajie, WU Meifen, ZHENG Chujun, WEN Zhaoyin. Strengthening and Thin-Filming of Garnet-Type Solid-State Electrolyte Ceramic Electrolyte for All-Solid-State Lithium Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1655
Category:
Received: Jan. 3, 2025
Accepted: Jul. 11, 2025
Published Online: Jul. 11, 2025
The Author Email: WEN Zhaoyin (zywen@mail.sic.ac.cn)