Journal of Atmospheric and Environmental Optics, Volume. 20, Issue 3, 225(2025)

Review on high-repetition rate femtosecond filaments for supercontinuum lidar

XU Ying1,3, WANG Tiejun2,3、*, LIU Yaoxiang3, WEI Yingxia3, and LENG Yuxin2,3
Author Affiliations
  • 1Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University,Shanghai 200092, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,Beijing 100049, China
  • 3State Key Laboratory of Ultra-Intense Laser Science and Technology, Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    References(84)

    [1] Molebny V, McManamon P, Steinvall O et al. Laser radar: Historical prospective: From the east to the west[J]. Optical Engineering, 56, 031220(2017).

    [2] Fernald F G. Analysis of atmospheric lidar observations: Some comments[J]. Applied Optics, 23, 652(1984).

    [3] Feng Z F, Liu X, Hao T et al. Review on ultra-long distance propagation of femtosecond laser pulses for remote sensing applications[J]. Chinese Journal of Lasers, 50, 0708003(2023).

    [4] Lefsky M A, Cohen W B, Parker G G et al. Lidar remote sensing for ecosystem studies[J]. BioScience, 52, 19-30(2002).

    [5] McManamon P F[M]. LidarTechnologies and Systems, 113-160(2019).

    [6] Tian X M, Liu D, Xu J W et al. Review of lidar technology for atmosphere monitoring[J]. Journal of Atmospheric and Environmental Optics, 13, 321-341(2018).

    [7] Wang Y Z, Zheng Y C. Technology and application of space-borne atmospheric detection lidar[J]. Aerospace Shanghai (Chinese & English), 37, 125-134(2020).

    [8] Spinhirne J D. Micro pulse lidar[J]. IEEE Transactions on Geoscience and Remote Sensing, 31, 48-55(1993).

    [9] Chuang T, Burns P, Walters E B et al. Space-based, multi-wavelength solid-state lasers for NASA's cloud aerosol transport system for international space station (CATS-ISS)[C], 8599, 85990M(2013).

    [10] Chin S L, Hosseini S A, Liu W et al. The propagation of powerful femtosecond laser pulses in optical media: Physics, applications, and new challenges[J]. Canadian Journal of Physics, 83, 863-905(2005).

    [11] Bergé L, Skupin S, Nuter R et al. Ultrashort filaments of light in weakly ionized, optically transparent media[J]. Reports on Progress in Physics, 70, 1633-1713(2007).

    [12] Chin S L, Wang T J, Marceau C et al. Advances in intense femtosecond laser filamentation in air[J]. Laser Physics, 22, 9888(2012).

    [13] Kasparian J, Sauerbrey R, Chin S L. The critical laser intensity of self-guided light filaments in air[J]. Applied Physics B, 71, 877-879(2000).

    [14] Nibbering E T, Curley P F, Grillon G et al. Conical emission from self-guided femtosecond pulses in air[J]. Optics Letters, 21, 62-65(1996).

    [15] Fontaine B L, Vidal F, Jiang Z et al. Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air[J]. Physics of Plasmas, 6, 1615-1621(1999).

    [16] Méchain G, Couairon A, André Y B et al. Long-range self-channeling of infrared laser pulses in air: A new propagation regime without ionization[J]. Applied Physics B, 79, 379-382(2004).

    [17] Yang W B, Zhou J N, Li B C et al. Time-resolved spectra and measurements of temperature and electron density of laser induced nitrogen plasma[J]. Acta Physica Sinica, 66, 267-274(2017).

    [18] Chen X W, Li X F, Liu J et al. Generation of 5 fs, 0.7 mJ pulses at 1 kHz through cascade filamentation[J]. Optics Letters, 32, 2402-2404(2007).

    [19] Kiselev D, Woeste L, Wolf J P. Filament-induced laser machining (FILM)[J]. Applied Physics B, 100, 515-520(2010).

    [20] Wang T J, Wei Y X, Liu Y X et al. Direct observation of laser guided corona discharges[J]. Scientific Reports, 5, 18681(2015).

    [21] Labutin T A, Lednev V N, Ilyin A A et al. Femtosecond laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 31, 90-118(2016).

    [22] Chin S L, Xu H L, Luo Q et al. Filamentation "remote" sensing of chemical and biological agents/pollutants using only one femtosecond laser source[J]. Applied Physics B, 95, 1-12(2009).

    [23] Dharmadhikari A K, Edward S, Dharmadhikari J A et al. On the generation of polarization-dependent supercontinuum and third harmonic in air[J]. Journal of Physics B Atomic Molecular and Optical Physics, 48, 094012(2015).

    [24] Dharmadhikari A K, Rajgara F A, Mathur D. Plasma effects and the modulation of white light spectra in the propagation of ultrashort, high-power laser pulses in barium fluoride[J]. Applied Physics B, 82, 575-583(2006).

    [25] Chen N, Wang T J, Zhu Z B et al. Laser ellipticity-dependent supercontinuum generation by femtosecond laser filamentation in air[J]. Optics Letters, 45, 4444-4447(2020).

    [26] Aközbek N, Scalora M, Bowden C M et al. White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air[J]. Optics Communications, 191, 353-362(2001).

    [27] Théberge F, Châteauneuf M, Ross V et al. Ultrabroadband conical emission generated from the ultraviolet up to the far-infrared during the optical filamentation in air[J]. Optics Letters, 33, 2515-2517(2008).

    [28] Wolf J P. Short-pulse lasers for weather control[J]. Reports on Progress in Physics Physical Society, 81, 026001(2018).

    [29] Xu H L, Cheng Y, Chin S L et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 9, 275-293(2015).

    [30] Chen N, Liu Y X, Du S Z et al. Research progress in applications of nanosecond and femtosecond laser-induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 53, 050003(2016).

    [31] Wang T J, Chen N, Guo H et al. Principle and research progress of atmospheric remote sensing by intense femtosecond lasers[J]. Laser & Optoelectronics Progress, 59, 0700001(2022).

    [32] Sartania S, Cheng Z, Lenzner M et al. Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate[J]. Optics Letters, 22, 1562-1564(1997).

    [33] Stark H, Buldt J, Müller M et al. 1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system[J]. Optics Letters, 46, 969-972(2021).

    [34] Cheng Y H, Wahlstrand J K, Jhajj N et al. The effect of long timescale gas dynamics on femtosecond filamentation[J]. Optics Express, 21, 4740-4751(2013).

    [35] Jhajj N, Cheng Y H, Wahlstrand J K et al. Optical beam dynamics in a gas repetitively heated by femtosecond filaments[J]. Optics Express, 21, 28980-28986(2013).

    [36] Mitryukovskiy S I, Liu Y, Houard A et al. Re-evaluation of the peak intensity inside a femtosecond laser filament in air[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 094003(2015).

    [37] Guo H, Wang T J, Zhang X et al. Direct measurement of radial fluence distribution inside a femtosecond laser filament core[J]. Optics Express, 28, 15529-15541(2020).

    [38] Xu S Q, Sun X D, Zeng B et al. Simple method of measuring laser peak intensity inside femtosecond laser filament in air[J]. Optics Express, 20, 299(2012).

    [39] Clark T R, Milchberg H M. Time- and space-resolved density evolution of the plasma waveguide[J]. Physical Review Letters, 78, 2373-2376(1997).

    [40] Zhang H C, Lu J, Ni X W. Optical interferometric analysis of colliding laser produced air plasmas[J]. Journal of Applied Physics, 106, 063308(2009).

    [41] Yang H, Zhang J, Li Y J et al. Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 66, 016406(2002).

    [42] Liu J S, Duan Z L, Zeng Z N et al. Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 72, 026412(2005).

    [43] Théberge F, Liu W W, Simard P T et al. Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 74, 036406(2006).

    [44] Tzortzakis S, Prade B, Franco M et al. Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air[J]. Optics Communications, 181, 123-127(2000).

    [45] Centurion M, Pu Y, Liu Z W et al. Holographic recording of laser-induced plasma[J]. Optics Letters, 29, 772-774(2004).

    [46] Abdollahpour D, Papazoglou D G, Tzortzakis S. Four-dimensional visualization of single and multiple laser filaments using in-line holographic microscopy[J]. Physical Review A, 84, 053809(2011).

    [47] Bernhardt J, Liu W, Théberge F et al. Spectroscopic analysis of femtosecond laser plasma filament in air[J]. Optics Communications, 281, 1268-1274(2008).

    [48] Zheng H Y, Yin F K, Wang T J et al. Time-resolved measurements of electron density and plasma diameter of 1 kHz femtosecond laser filament in air[J]. Chinese Optics Letters, 20, 093201(2022).

    [49] Balachninaitė O, Skruibis J, Matijošius A et al. Temporal and spatial properties of plasma induced by infrared femtosecond laser pulses in air[J]. Plasma Sources Science and Technology, 31, 045001(2022).

    [50] Aragón C, Aguilera J A. Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 893-916(2008).

    [51] Couairon A, Tzortzakis S, Bergé L et al. Infrared femtosecond light filaments in air: Simulations and experiments[J]. Journal of the Optical Society of America B, 19, 1117(2002).

    [52] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 441, 47-189(2007).

    [53] Point G, Milián C, Couairon A et al. Generation of long-lived underdense channels using femtosecond filamentation in air[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 094009(2015).

    [54] Zeng Q W, Liu L, Ju J J et al. Numerical investigation on the heat deposition characteristics of femtosecond laser pulses undergoing multiple filaments[J]. Physica Scripta, 95, 085605(2020).

    [55] Koulouklidis A D, Lanara C, Daskalaki C et al. Impact of gas dynamics on laser filamentation THz sources at high repetition rates[J]. Optics Letters, 45, 6835-6838(2020).

    [56] Chang J W, Li D W, Xu L T et al. Elongation of filamentation and enhancement of supercontinuum generation by a preformed air density hole[J]. Optics Express, 30, 16987-16995(2022).

    [57] Li Z Y, Leng Y X, Li R X. Further development of the short-pulse petawatt laser: Trends, technologies, and bottlenecks[J]. Laser & Photonics Reviews, 17, 2100705(2023).

    [58] Boyd R W[M]. Nonlinear Optics, 69-132(2007).

    [59] Chin S L[M]. Femtosecond Laser Filamentation(2010).

    [60] Xu Y, Yang C P, Li X W et al. Pulse repetition-rate effect on the critical power for self-focusing of femtosecond laser in air[J]. Optics Express, 32, 28048-28057(2024).

    [61] Braun A, Korn G, Liu X et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 20, 73-75(1995).

    [62] Hosseini S, Kosareva O, Panov N et al. Femtosecond laser filament in different air pressures simulating vertical propagation up to 10 km[J]. Laser Physics Letters, 9, 868-874(2012).

    [63] Yin F K, Long J, Liu Y X et al. Pulse repetition-rate effect on the intensity inside a femtosecond laser filament in air[J]. High Power Laser Science and Engineering, 11, e46(2023).

    [64] Walch P, Mahieu B, Arantchouk L et al. Impact of gravitational force on high repetition rate filamentation of femtosecond laser pulses in the atmosphere[J]. Applied Physics Letters, 124, 151101(2024).

    [65] Xue J Y, Zhang N, Guo L J et al. Effect of laser repetition rate on the fluorescence characteristic of a long-distance femtosecond laser filament[J]. Optics Letters, 47, 5676-5679(2022).

    [66] Ding Z H, Wu J, Xu Z W et al. The application prospect of the ionospheric incoherent scatter radar measurement[J]. Chinese Journal of Radio Science, 31, 193-198(2016).

    [67] Yin F K, Wang T J, Liu Y X et al. Pulse repetition rate effect on the plasma inside femtosecond laser filament in air[J]. Chinese Optics Letters, 22, 013201(2024).

    [68] Kasparian J, Sauerbrey R, Mondelain D et al. Infrared extension of the super continuum generated by femtosecond terawatt laser pulses propagating in the atmosphere[J]. Optics Letters, 25, 1397-1399(2000).

    [69] Yang C P, Wang T J, Liu Y X et al. Understanding the mechanism of pulse cumulative effect on supercontinuum generation from femtosecond laser filament in air[J]. Optics Communications, 574, 131171(2025).

    [70] Liu Y X, Yin F K, Wang T J et al. Stable, intense supercontinuum light generation at 1 kHz by electric field assisted femtosecond laser filamentation in air[J]. Light, 13, 42(2024).

    [71] Meng Q H, Lin H, Wang G et al. Laser radar operating principle and development status[J]. Modern Manufacturing Technology and Equipment, 55, 155-157(2019).

    [72] Li H R, Zhang S, Xie B F et al. Design of aspheric surface annular Fresnel lens for filament lidar collection system[J]. Chinese Journal of Lasers, 50, 124-130(2023).

    [73] Wöste L, Wedekind C, Wille H et al. Femtosecond lidar[J]. Ultrafast Phenomena XI, 63, 118-120(1998).

    [74] Rairoux P, Schillinger H, Niedermeier S et al. Remote sensing of the atmosphere using ultrashort laser pulses[J]. Applied Physics B, 71, 573-580(2000).

    [75] Kasparian J, Rodriguez M, Mejean G et al. White-light filaments for atmospheric analysis[J]. Science, 301, 61-64(2003).

    [76] Bourayou R, Méjean G, Kasparian J et al. White-light filaments for multiparameter analysis of cloud microphysics[J]. Journal of the Optical Society of America B, 22, 369-377(2005).

    [77] Béjot P, Bonacina L, Extermann J et al. 32 TW atmospheric white-light laser[J]. Applied Physics Letters, 90, 151106(2007).

    [78] Zhang L W, Lin C, Xin L et al. New remote sensing system: White-light lidar[J]. High Power Laser and Particle Beams, 20, 1603-1607(2008).

    [79] Yue S Y, Lin C, Gao J Y. Development and application of white-light lidar[J]. Journal of Atmospheric and Environmental Optics, 5, 1-13(2010).

    [80] Rohwetter P, Kasparian J, Stelmaszczyk K et al. Laser-induced water condensation in air[J]. Nature Photonics, 4, 451-456(2010).

    [81] Petit Y, Henin S, Nakaema W M et al. 1-J white-light continuum from 100-TW laser pulses[J]. Physical Review A, 83, 013805(2011).

    [82] Couairon A, Franco M, Méchain G et al. Femtosecond filamentation in air at low pressures: Part I: Theory and numerical simulations[J]. Optics Communications, 259, 265-273(2006).

    [83] Petrarca M, Henin S, Berti N et al. White-light femtosecond lidar at 100 TW power level[J]. Applied Physics B, 114, 319-325(2014).

    [84] Dicaire I, Jukna V, Praz C et al. Spaceborne laser filamentation for atmospheric remote sensing[J]. Laser & Photonics Reviews, 10, 481-493(2016).

    Tools

    Get Citation

    Copy Citation Text

    Ying XU, Tiejun WANG, Yaoxiang LIU, Yingxia WEI, Yuxin LENG. Review on high-repetition rate femtosecond filaments for supercontinuum lidar[J]. Journal of Atmospheric and Environmental Optics, 2025, 20(3): 225

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: "Advanced technology of lidar and its application in atmospheric environment" Albun

    Received: Nov. 18, 2024

    Accepted: --

    Published Online: Jun. 9, 2025

    The Author Email: Tiejun WANG (tiejunwang@siom.ac.cn)

    DOI:10.3969/j.issn.1673-6141.2025.03.001

    Topics