Laser & Optoelectronics Progress, Volume. 60, Issue 22, 2220001(2023)

Influence of Hyperparameters on Performance of Optical Neural Network Training Algorithms

Wen Cao, Meiyu Liu, Minghao Lu, Xiaofeng Shao, Qifa Liu, and Jin Wang*
Author Affiliations
  • School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, Jiangsu , China
  • show less
    References(25)

    [1] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [2] Lin M X, Huang X P, Lin Z W et al. Precipitation intensity recognition was based on a convolution neural network with fused encoded and decoded features[J]. Laser & Optoelectronics Progress, 60, 0211003(2023).

    [3] Leydig C, Theis L, Huszár F et al. Photo-realistic single image super-resolution using a generative adversarial network[C], 105-114(2017).

    [4] Kang C, Li W X, Huang S et al. Research on an active optical correction algorithms based on deep learning[J]. Acta Optica Sinica, 41, 0611004(2021).

    [5] Wang T, Dong W D, Shen K et al. Sparse-view photoacoustic image quality enhancement based on a modified U-Net[J]. Laser & Optoelectronics Progress, 59, 0617022(2022).

    [6] de Lima T F, Peng H T, Tait A N et al. Machine learning with neuromorphic photonics[J]. Journal of Lightwave Technology, 37, 1515-1534(2019).

    [7] Zhang Q M, Yu H Y, Barbiero M et al. Artificial neural networks enabled by nanophotonics[J]. Light: Science & Applications, 8, 1-14(2019).

    [8] Xu X Y, Tan M X, Corcoran B et al. 11 TOPS photonic convolutional accelerator for optical neural networks[J]. Nature, 589, 44-51(2021).

    [9] Lin X, Rivenson Y, Yardimci N T et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 361, 1004-1008(2018).

    [10] Zhao Y H, Wang X, Gao D S et al. On-chip programmable pulse processor employing a cascaded MZI-MRR structure[J]. Frontiers of Optoelectronics, 12, 148-156(2019).

    [11] Wetzstein G, Ozcan A, Gigan S et al. Inferences in artificial intelligence with deep optics and photonics[J]. Nature, 588, 39-47(2020).

    [12] Shen Y C, Harris N C, Skirlo S et al. Deep learning with coherent nanophotonic circuits[J]. Nature Photonics, 11, 441-446(2017).

    [13] Hughes T W, Momchil M, Yu S et al. Training of photonic neural networks through in situ backpropagation[J]. Optica, 5, 864-871(2018).

    [14] Zhang T, Wang J, Dan Y H et al. Efficient training and design of a photonic neural networks through neuroevolution[J]. Optics Express, 27, 37150-37163(2019).

    [15] Zang Y B, Chen M H, Yang S G et al. Electro-optical neural networks based on time-stretch method[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 7701410(2020).

    [16] Alvear-Sandoval R F, Sancho-Gómez J L, Figueiras-Vidal A R. On improving CNN performance: the case of MNIST[J]. Information Fusion, 52, 106-109(2019).

    [17] Fang M Y S, Manipatruni S, Wierzynski C et al. Design of optical neural networks with component imprecisions[J]. Optics Express, 27, 14009-14029(2019).

    [18] Shokraneh F, Nezami M S, Liboiron-Ladouceur O. Theoretical and experimental analysis of a 4×4 reconfigurable MZI-based linear optical processor[J]. Journal of Lightwave Technology, 38, 1258-1267(2020).

    [19] Gu J Q, Zhao Z, Feng C H et al. Toward area-efficient optical neural networks: an FFT-based architecture[C], 476-481(2020).

    [20] Clements W R, Humphreys P C, Metcalf B J et al. Optimal design for universal multiport interferometers[J]. Optica, 3, 1460-1465(2016).

    [21] Bao Q L, Zhang H, Ni Z H et al. Monolayer graphene as a saturable absorber in a mode-locked laser[J]. Nano Research, 4, 297-307(2011).

    [22] Zheng H, Yang Z L, Liu W J et al. Improving deep neural networks using softplus units[C](2015).

    [23] Zhu D Y, Lu S Y, Wang M Q et al. Efficient precision-adjustable architecture for softmax function in deep learning[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 67, 3382-3386(2020).

    [24] Shastri B J, Tait A N, de Lima T F et al. Photonics for artificial intelligence and neuromorphic computing[J]. Nature Photonics, 15, 102-114(2021).

    [25] Okuma N, Sato M. Non-Hermitian topological phenomena: a review[J]. Annual Review of Condensed Matter Physics, 14, 83-107(2023).

    Tools

    Get Citation

    Copy Citation Text

    Wen Cao, Meiyu Liu, Minghao Lu, Xiaofeng Shao, Qifa Liu, Jin Wang. Influence of Hyperparameters on Performance of Optical Neural Network Training Algorithms[J]. Laser & Optoelectronics Progress, 2023, 60(22): 2220001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics in Computing

    Received: Jan. 30, 2023

    Accepted: Feb. 27, 2023

    Published Online: Nov. 6, 2023

    The Author Email: Jin Wang (jinwang@njupt.edu.cn)

    DOI:10.3788/LOP230535

    Topics