Optics and Precision Engineering, Volume. 32, Issue 19, 2889(2024)
Femtosecond laser annealing of 4H-SiC interfaces and optimization of their electrical performance
[1] KIMOTO T, COOPER J A[M]. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications(2014).
[2] PUSHPAKARAN B N, SUBBURAJ A S, BAYNE S B et al. Impact of silicon carbide semiconductor technology in Photovoltaic Energy System[J]. Renewable and Sustainable Energy Reviews, 55, 971-989(2016).
[3] MILLAN J, GODIGNON P, PERPINA X et al. A survey of wide bandgap power semiconductor devices[J]. IEEE Transactions on Power Electronics, 29, 2155-2163(2014).
[4] SULLIVAN J S. High power operation of a nitrogen doped, vanadium compensated, 6H-SiC extrinsic photoconductive switch[J]. Applied Physics Letters, 104, 172106(2014).
[5] ITOH A, MATSUNAMI H. Single crystal growth of SiC and electronic devices[J]. Critical Reviews in Solid State and Materials Sciences, 22, 111-197(1997).
[6] TUNG R T. The physics and chemistry of the Schottky barrier height[J]. Applied Physics Reviews, 1(2014).
[7] FANG Y, WU X Z, YANG J Y et al. Ultrafast bulk carrier recombination transients in n-type and semi-insulating 4H-SiC crystals[J]. Applied Physics Letters, 112, 201904(2018).
[8] LAARIEDH F, LAZAR M, CREMILLIEU P et al. The role of nickel and titanium in the formation of ohmic contacts on p-type 4H-SiC[J]. Semiconductor Science and Technology, 28(2013).
[9] LIU B B, QIN F W, WANG D J. Enhanced TiC/SiC Ohmic contacts by ECR hydrogen plasma pretreatment and low-temperature post-annealing[J]. Applied Surface Science, 355, 59-63(2015).
[10] LEE D, KIM C, LEE H et al. Improving the barrier height uniformity of 4H-SiC Schottky barrier diodes by nitric oxide post-oxidation annealing[J]. IEEE Electron Device Letters, 35, 868-870(2014).
[11] KRACICA M, MAYES E L H, TRAN H N et al. Rectifying electrical contacts to n-type 6H-SiC formed from energetically deposited carbon[J]. Carbon, 102, 141-144(2016).
[12] CHAI N Y, YUE Y F, CHEN X Y et al. Isotropic sintering shrinkage of 3D glass-ceramic nanolattices: backbone preforming and mechanical enhancement[J]. International Journal of Extreme Manufacturing, 6(2024).
[13] QIAO J Q, CHAI N Y, FENG Y Z et al. Two-step surface treatment of femtosecond laser irradiation and ionic liquid to enhance thermoelectric properties of PEDOT: PSS films[J]. Applied Surface Science, 642, 158569(2024).
[14] OBATA K, CABALLERO-LUCAS F, KAWABATA S et al. GHz bursts in MHz burst (BiBurst) enabling high-speed femtosecond laser ablation of silicon due to prevention of air ionization[J]. International Journal of Extreme Manufacturing, 5(2023).
[15] CABALLERO-LUCAS F, OBATA K, SUGIOKA K. Enhanced ablation efficiency for silicon by femtosecond laser microprocessing with GHz bursts in MHz bursts(BiBurst)[J]. International Journal of Extreme Manufacturing, 4(2022).
[16] WANG M H, ZHAO K H, WU J Y et al. Femtosecond laser fabrication of nanograting-based distributed fiber sensors for extreme environmental applications[J]. International Journal of Extreme Manufacturing, 3(2021).
[17] ZHANG Y X, WU D, ZHANG Y C et al. Femtosecond laser direct writing of functional stimulus-responsive structures and applications[J]. International Journal of Extreme Manufacturing, 5(2023).
[18] ZHAO J J, CHAI N Y, CHEN X Y et al. Nonthermal laser ablation of high-efficiency semitransparent and aesthetic perovskite solar cells[J]. Nanophotonics, 11, 987-993(2022).
[19] CHAI N Y, CHEN X Y, ZENG Z L et al. Photoexcitation-induced passivation of SnO(2) thin film for efficient perovskite solar cells[J]. National Science Review, 10(2023).
[20] YAMAGUCHI M, UENO S, KUMAI R et al. Raman spectroscopic study offemtosecond laser-induced phase transformation associated with ripple formation onsingle-crystalSiC[J]. Applied Physics A, 99, 23-27(2010).
[21] HAVEL M, BARON D, COLOMBAN P. ‘Smart’ Raman/Rayleigh imaging of nanosized SiC materials using the spatial correlation model[J]. Journal of Materials Science, 39, 6183-6190(2004).
[22] JIA T Q, ZHAO F L, HUANG M et al. Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams[J]. Applied Physics Letters, 88(2006).
[23] LIN Z Y, JI L F, WU Y et al. Laser-induced interfacial state changes enable tuning of the Schottky-barrier height in SiC[J]. Applied Surface Science, 469, 68-75(2019).
[24] MOCHIZUKI K, KOSUGI R, YONEZAWA Y et al. Selection of ion species suited for channeled implantation to be used in multi-epitaxial growth for SiC superjunction devices[J]. Japanese Journal of Applied Physics, 58(2019).
[25] WELLMANN P J. Review of SiC crystal growth technology[J]. Semiconductor Science Technology, 33, 103001(2018).
[26] GIANNAZZO F, ROCCAFORTE F, RAINERI V et al. Transport localization in heterogeneous Schottky barriers of quantum-defined metal films[J]. Europhysics Letters (EPL), 74, 686-692(2006).
[27] ITOH A, KIMOTO T, MATSUNAMI H. Excellent reverse blocking characteristics of high-voltage 4H-SiC Schottky rectifiers with boron-implanted edge termination[J]. IEEE Electron Device Letters, 17, 139-141(1996).
Get Citation
Copy Citation Text
Yuqi REN, Yunfan YUE, Sheng LI, Nianyao CHAI, Xiangyu CHEN, Zhongle ZENG, Fengyi ZHAO, Huan WANG, Xuewen WANG. Femtosecond laser annealing of 4H-SiC interfaces and optimization of their electrical performance[J]. Optics and Precision Engineering, 2024, 32(19): 2889
Category:
Received: Apr. 23, 2024
Accepted: --
Published Online: Jan. 9, 2025
The Author Email: