Chinese Journal of Lasers, Volume. 48, Issue 15, 1517001(2021)

Development of High-Performance Optical Coherence Tomography

Ping Xue*
Author Affiliations
  • State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
  • show less
    References(31)

    [1] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [2] Fercher A F, Hitzenberger C K, Kamp G et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 117, 43-48(1995).

    [3] Usler G H, Lindner M W. “Coherence radar” and “spectral radar”: new tools for dermatological diagnosis[J]. Journal of Biomedical Optics, 3, 21-31(1998).

    [4] Wojtkowski M, Leitgeb R, Kowalczyk A et al. In vivo human retinal imaging by Fourier domain optical coherence tomography[J]. Journal of Biomedical Optics, 7, 457-463(2002).

    [5] Choma M A, Sarunic M V, Yang C et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 11, 2183-2189(2003).

    [6] de Boer J F, Cense B, Park B H et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography[J]. Optics Letters, 28, 2067-2069(2003).

    [7] Leitgeb R, Hitzenberger C, Fercher A. Performance of Fourier domain vs. time domain optical coherence tomography[J]. Optics Express, 11, 889-894(2003).

    [8] Nassif N, Cense B, Hyle Park B et al. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography[J]. Optics Letters, 29, 480-482(2004).

    [9] Srinivasan V J, Wojtkowski M, Witkin A J et al. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography[J]. Ophthalmology, 113, 2054-2065(2006).

    [10] Potsaid B, Gorczynska I, Srinivasan V J et al. Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70, 000 to 312, 500 axial scans per second[J]. Optics Express, 16, 15149-15169(2008).

    [11] Grulkowski I, Gora M, Szkulmowski M et al. Anterior segment imaging with spectral OCT system using a high-speed CMOS camera[J]. Optics Express, 17, 4842-4858(2009).

    [14] St Marie L R, An F A, Corso A L et al. Robust, real-time, digital focusing for FD-OCM using ISAM on a GPU[J]. Proceedings of SPIE, 8934, 89342W(2014).

    [15] Vabre L, Dubois A, Boccara A C. Thermal-light full-field optical coherence tomography[J]. Optics Letters, 27, 530-532(2002).

    [16] Tearney G J, Brezinski M E, Bouma B E et al. Determination of the refractive index of highly scattering human tissue by optical coherence tomography[J]. Optics Letters, 20, 2258-2260(1995).

    [17] Drexler W, Morgner U, Kärtner F X et al. In vivo ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 24, 1221-1223(1999).

    [18] Sun F, Xue P, Gao J S et al. The reconstruction of optical coherence tomography image[J]. Acta Optica Sinica, 20, 1043-1046(2000).

    [19] Xue P, Fujimoto J G. Ultrahigh resolution optical coherence tomography with femtosecond Ti∶Sapphire laser and photonic crystal fiber[J]. Chinese Science Bulletin, 53, 1963-1966(2008).

    [20] Zheng J G, Chen T Y, Wang C M et al. Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography[J]. Journal of Biomedical Optics, 17, 070503(2012).

    [21] Zheng J G, Huo T C, Chen T Y et al. Understanding three-dimensional spatial relationship between the mouse second polar body and first cleavage plane with full-field optical coherence tomography[J]. Journal of Biomedical Optics, 18, 010503(2013).

    [22] Zheng J G, Huo T C, Tian N et al. Noninvasive three-dimensional live imaging methodology for the spindles at meiosis and mitosis[J]. Journal of Biomedical Optics, 18, 050505(2013).

    [24] Donghak C, Hiro-Oka H, Furukawa H et al. Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s[J]. Optics Letters, 33, 1318-1320(2008).

    [25] Golubovic B, Bouma B E, Tearney G J et al. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr 4+∶forsterite laser[J]. Optics Letters, 22, 1704-1706(1997).

    [26] Wieser W, Biedermann B R, Klein T et al. Multi-Megahertz OCT:high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second[J]. Optics Express, 18, 14685-14704(2010).

    [29] Huo T C, Wang C M, Zhang X et al. Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source[J]. Journal of Biomedical Optics, 20, 030503(2015).

    [30] Zhang X, Huo T C, Wang C M et al. Optical computing for optical coherence tomography[J]. Scientific Reports, 6, 37286(2016).

    [32] Chen T Y, Zhang N, Huo T C et al. Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor[J]. Journal of Biomedical Optics, 18, 086011(2013).

    [33] Liao W C, Chen T Y, Wang C M et al. Endoscopic optical coherence tomography with a focus-adjustable probe[J]. Optics Letters, 42, 4040-4043(2017).

    Tools

    Get Citation

    Copy Citation Text

    Ping Xue. Development of High-Performance Optical Coherence Tomography[J]. Chinese Journal of Lasers, 2021, 48(15): 1517001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Feature issue on Large-Scale Laser Facilities in China

    Received: Jun. 17, 2021

    Accepted: Jul. 6, 2021

    Published Online: Aug. 12, 2021

    The Author Email: Ping Xue (xuep@tsinghua.edu.cn)

    DOI:10.3788/CJL202148.1517001

    Topics