Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1812008(2024)

Fine-Grained Lock Cylinder Hole Recognition Based on the Progressive Fusion of Cross-Granularity Features

Kunhua Zhu1, Lei Sun1,2, Yipeng Liao1、*, Xin Yan1, and Feifei Cheng1
Author Affiliations
  • 1College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
  • 2Zhicheng College, Fuzhou University, Fuzhou 350002, Fujian, China
  • show less
    Figures & Tables(19)
    Overall recognition model framework
    RRCM
    Fine to coarse progressive multi-granularity training strategy
    Basic framework for mid and high representational learning
    Random sample exchange implementation process
    Network framework using ensemble loss functions
    Discriminative component and diversity component framework
    Examples of selected images from the four datasets. (a) Images of the CUB-200-2011 dataset; (b) images of the Standford Cars dataset; (c) images of the FGVC-Aircraft dataset; (d) images of the Lock-Hole dataset
    Activation maps of convolutional layer classes in the last three stages of the model. (a) Class activation maps of baseline model ; (b) class activation maps of the model which introduces dropout; (c) class activation maps of the model which introduces RSSM
    Experimental results of proposed method on CUB-200-2011 dataset. (a) Train and test loss; (b) train and test accuracy
    Experimental results of proposed method on the Standford Cars dataset. (a) Train and test loss; (b) train and test accuracy
    Experimental results of proposed method on FGVC-Aircraft dataset. (a) Train and test loss curves; (b) train and test accuracy curves
    Experimental results of different methods on Lock-Hole dataset. (a) Train loss curves of different methods; (b) test accuracy curves of different methods
    • Table 1. Experimental results of synergistic effects of progressive training, RRCM and progressive training strategies with different stage

      View table

      Table 1. Experimental results of synergistic effects of progressive training, RRCM and progressive training strategies with different stage

      Backbone / training stage / randomized region confusion parameter,p / number of training steps,SAccuracyCombined accuracy
      ConvNeXt /—/(1)/191.2
      ConvNeXt /stage 3 /(1,1)/ 291.591.8
      ConvNeXt / stage 3+stage 2 /(1,1,1)/ 391.992.3
      ConvNeXt / stage 3+stage 1 /(1,1,1)/ 390.991.2
      ConvNeXt / stage 3+stage 0 /(1,1,1)/ 390.891.0
      ConvNeXt / stage 2+stage 1 /(1,1,1)/ 390.490.9
      ConvNeXt / stage 1+stage 0 /(1,1,1)/ 389.890.3
      ConvNeXt / stage 3+stage 2+stage 1 /(1,1,1,1)/ 491.692.1
      ConvNeXt / stage 3+stage 2+stage 0 /(1,1,1,1)/ 491.591.8
      ConvNeXt / stage 3+stage 2+stage 1+stage 0 /(1,1,1,1,1)/ 591.591.7
      ConvNeXt / stage 3 /(2,1)/ 292.092.2
      ConvNeXt / stage 3+stage 2 /(4,2,1)/ 392.392.5
      ConvNeXt / stage 3+stage 2 /(8,4,1)/ 392.492.6
      ConvNeXt / stage 3+stage 2 /(8,2,1)/ 392.492.5
      ConvNeXt / stage 2+stage 1 /(8,4,1)/ 391.191.3
      ConvNeXt / stage 1+stage 0 /(8,4,1)/ 390.991.2
      ConvNeXt / stage 3+stage 2+stage 1 /(8,4,2,1)/ 491.392.0
      ConvNeXt / stage 3+stage 2+stage 1 /(16,8,4,1)/ 490.891.3
      ConvNeXt / stage 3+stage 2+stage 1+stage 0 /(16,8,4,2,1)/ 590.691.2
    • Table 2. Experimental results of RSSM introducing different hyperparameters

      View table

      Table 2. Experimental results of RSSM introducing different hyperparameters

      MethodParameterAccuracyCombined accuracy
      Baseline92.4092.62
      +Dropoutρ=0.592.4792.67
      +RSSMρ=0.292.3892.59
      +RSSMρ=0.492.4992.68
      +RSSMρ=0.691.5791.92
      +RSSMρU(0.35,0.55)92.5892.75
    • Table 3. Experiments results of Lce+mc at different λ, μ uint:%

      View table

      Table 3. Experiments results of Lce+mc at different λ, μ uint:%

      Loss functionλμAccuracyCombined accuracy
      Cross entropy loss function92.4092.62
      Textual loss function1.51092.4692.63
      1.52092.5192.77
      21092.5492.61
      22092.5292.69
    • Table 4. Results of ablation experiments of proposed method on the Lock-Hole dataset

      View table

      Table 4. Results of ablation experiments of proposed method on the Lock-Hole dataset

      MethodAccuracyCombined accuracy
      ConvNeXt94.40
      Baseline95.91(+1.51)96.63(+2.23)
      Baseline+RSSM96.37(+1.97)96.76(+2.36)
      Baseline+Lce+mc96.40(+2.00)96.77(+2.37)
      Baseline+RSSM+Lce+mc96.72(+2.32)97.30(+2.90)
    • Table 5. Comparative experimental results of different methods on three datasets

      View table

      Table 5. Comparative experimental results of different methods on three datasets

      MethodBackboneLabelAccuracy /%GFLOPs
      CUB-200-2011Standford CarsFGVC-Aircraft
      MA-CNN21VGG-19Label86.592.889.961.5
      DFL-CNN16ResNet50Label87.493.191.764.8
      DCL9Resnet50Label87.894.593.061.5
      ACNet22ResNet50Label88.194.692.463.4
      AP-CNN10ResNet50Label88.495.494.178.1
      SnapMix23ResNet101Label88.594.493.731.5
      PMG24ResNet50Label89.695.193.437.4
      CAL25ResNet101Label90.695.594.234.6
      ViTViT-B_16Label91.093.592.111.2
      DCAL26R50-ViTLabel92.095.393.342.4
      SIM-Trans27ViT-B_16Label91.861.9
      TransFG28ViT-B_16Label91.794.861.9
      Proposed methodConvNeXtLabel92.895.594.054.7
    • Table 6. Comparative experimental results of different methods on Lock-Hole dataset

      View table

      Table 6. Comparative experimental results of different methods on Lock-Hole dataset

      MethodBackboneLabelAccuracy /%Single recognition time t /sGFLOPs
      ResNet50ResNet50Label93.30.00716.5
      ViTViT-B_16Label92.50.01111.2
      ConvNeXt19ConvNeXt-TLabel94.40.00817.9
      PMG24ResNet50Label95.80.01237.4
      DCL9Resnet50Label96.20.01261.5
      SnapMix23ResNet101Label95.60.01531.5
      SIM-Trans27ViT-B_16Label96.50.14361.9
      TransFG28ViT-B_16Label96.70.14361.9
      Proposed methodConvNeXtLabel97.30.01654.7
    Tools

    Get Citation

    Copy Citation Text

    Kunhua Zhu, Lei Sun, Yipeng Liao, Xin Yan, Feifei Cheng. Fine-Grained Lock Cylinder Hole Recognition Based on the Progressive Fusion of Cross-Granularity Features[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1812008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Jan. 2, 2024

    Accepted: Mar. 7, 2024

    Published Online: Sep. 14, 2024

    The Author Email: Yipeng Liao (fzu_lyp@163.com)

    DOI:10.3788/LOP240431

    CSTR:32186.14.LOP240431

    Topics