Infrared and Laser Engineering, Volume. 52, Issue 3, 20220464(2023)

Enhancing broadband response of hot-electron photodetectors by Au/TiO2 composite nanostructure

Sitong Guo1, Kaifang Qiu2, Wenyan Wang1, Guohui Li2, Aiping Zhai2, Deng Pan2, Ting Ji2, and Yanxia Cui2,3、*
Author Affiliations
  • 1College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
  • 2College of Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
  • 3Aluminum-Magnesium based new material R&D Co. Ltd. -Subsidiary of Xing Xian County Economic and Technological Development Zone, Lvliang 035300, China
  • show less
    References(39)

    [5] Qiu Kaifang, Zhai Aiping, Wang Wenyan, et al. Research progress on surface plasmon hot-carrier photodetectors[J]. Semiconductor Technology, 45, 169-178(2020).

    [6] He Weidi, Su Dan, Wang Shanjiang, et al. Progress of surface plasmon nanostructure enhanced photodetector (Invited)[J]. Infrared and Laser Engineering, 50, 20211014(2021).

    [7] Sun R N, Peng K Q, Hu B, et al. Plasmon enhanced broadband optical absorption in ultrathin silicon nanobowl array for photoactive devices applications[J]. Applied Physics Letters, 107, 013107(2015).

    [9] Yan Xianyong, Zhai Aiping, Shi Linlin, et al. Research progress on solar water splitting based on hot carrier effect of surface plasmon polaritons[J]. Semiconductor Technology, 46, 581-590, 616(2021).

    [10] Ishii S, Shinde S L, Nagao T. Nonmetallic materials for plasmonic hot carrier excitation[J]. Advanced Optical Materials, 7, 00603(2018).

    [11] Jang Y J, Chung K, Lee J S, et al. Plasmonic hot carriers imaging: promise and outlook[J]. ACS Phontonics, 5, 4711-4723(2018).

    [14] Zayats A V, Maier S. Hot-electron effects in plasmonics and plasmonic materials[J]. Advanced Optical Materials, 5, 1700508(2017).

    [16] Wang Qilong, Li Yupei, Zhai Yusheng, et al. Progress of surface plasmon enhanced near-infrared photodetector based on metal/Si Schottky heterojunction[J]. Infrared and Laser Engineering, 48, 0203002(2019).

    [19] Mirzaee S M A, Lebel O, Nunzi J M. Simple unbiased hot-electron polarization-sensitive near-infrared photodetector[J]. ACS Appl Mater Interfaces, 10, 11862-11871(2018).

    [20] Luo X, Zhao F, Liang Y, et al. Facile nanogold-perovskite enabling ultrasensitive flexible broadband photodetector with pW scale detection limit[J]. Advanced Optical Materials, 6, 1800996(2018).

    [21] Gao Linhua, Cui Yanxia, Liang Qiangbing, et al. Research progress in metal-inorganic semiconductor-metal photodetectors[J]. Infrared and Laser Engineering, 49, 20201025(2020).

    [26] Nazirzadeh M A, Atar F B, Turgut B B, et al. Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection[J]. Sci Rep, 4, 7103(2014).

    [30] Gundlach L, Ernstorfer R, Willig F. Escape dynamics of photoexcited electrons at catechol: TiO2(110)[J]. Physical Review B, 74, 035324(2006).

    [37] Moskovits M J S. Hot electrons cross boundaries[J]. Science, 332, 676-677(2011).

    Tools

    Get Citation

    Copy Citation Text

    Sitong Guo, Kaifang Qiu, Wenyan Wang, Guohui Li, Aiping Zhai, Deng Pan, Ting Ji, Yanxia Cui. Enhancing broadband response of hot-electron photodetectors by Au/TiO2 composite nanostructure[J]. Infrared and Laser Engineering, 2023, 52(3): 20220464

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical devices

    Received: Jul. 5, 2022

    Accepted: --

    Published Online: Apr. 12, 2023

    The Author Email: Yanxia Cui (yanxiacui@tyut.edu.cn)

    DOI:10.3788/IRLA20220464

    Topics