Opto-Electronic Engineering, Volume. 50, Issue 9, 230119-1(2023)

Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves

Bo Liu, Xin Xie*, Xuetao Gan, and Jianlin Zhao
Author Affiliations
  • Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710129, China
  • show less
    References(85)

    [1] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [2] Tang D L, Chen L, Liu J et al. Achromatic metasurface doublet with a wide incident angle for light focusing[J]. Opt Express, 28, 12209-12218(2020).

    [3] Hou H S, Wang G M, Li H P et al. Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna[J]. Acta Phys Sin, 65, 027701(2016).

    [4] Lei Y S, Zhang Q, Guo Y H et al. Snapshot multi-dimensional computational imaging through a liquid crystal diffuser[J]. Photonics Res, 11, B111-B124(2023).

    [5] Luo X G, Pu M B, Li X et al. Broadband spin hall effect of light in single nanoapertures[J]. Light Sci Appl, 6, e16276(2017).

    [6] Burch J, Di Falco A. Surface topology specific metasurface holograms[J]. ACS Photonics, 5, 1762-1766(2018).

    [7] Zhang C M, Dong F L, Intaravanne Y et al. Multichannel metasurfaces for anticounterfeiting[J]. Phys Rev Appl, 12, 034028(2019).

    [8] Zhang X H, Li X, Jin J J et al. Polarization-independent broadband meta-holograms: via polarization-dependent nanoholes[J]. Nanoscale, 10, 9304-9310(2018).

    [9] Chen D B, Yang J B, He X et al. Tunable polarization-preserving vortex beam generator based on diagonal cross-shaped graphene structures at terahertz frequency[J]. Adv Opt Mater, 11, 2300182(2023).

    [10] Liang Y, Dong Y Y, Jin Y X et al. Terahertz vortex beams generated by the ring-arranged multilayer transmissive metasurfaces[J]. Infrared Phys Technol, 127, 104441(2022).

    [11] Akram M R, Bai X D, Jin R H et al. Photon spin hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves[J]. IEEE Trans Antennas Propag, 67, 4650-4658(2019).

    [12] Guo Y H, Huang Y J, Li X et al. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface[J]. Adv Opt Mater, 7, 1900503(2019).

    [13] Monticone F, Estakhri N M, Alù A. Full control of nanoscale optical transmission with a composite metascreen[J]. Phys Rev Lett, 110, 203903(2013).

    [14] Qin F, Ding L, Zhang L et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Sci Adv, 2, e1501168(2016).

    [15] Akram M R, Mehmood M Q, Bai X D et al. High efficiency ultrathin transmissive metasurfaces[J]. Adv Opt Mater, 7, 1801628(2019).

    [16] Jing X F, Gui X C, Zhou P W et al. Physical explanation of Fabry–Pérot cavity for broadband bilayer metamaterials polarization converter[J]. J Light Technol, 36, 2322-2327(2018).

    [17] Pfeiffer C, Grbic A. Millimeter-wave transmitarrays for wavefront and polarization control[J]. IEEE Trans Microwave Theory Tech, 61, 4407-4417(2013).

    [18] Bouchard F, De Leon I, Schulz S A et al. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges[J]. Appl Phys Lett, 105, 101905(2014).

    [19] Chen M L N, Jiang L J, Sha W E I. Orbital angular momentum generation and detection by geometric-phase based metasurfaces[J]. Appl Sci, 8, 362(2018).

    [20] Yao B S, Zang X F, Li Z et al. Dual-layered metasurfaces for asymmetric focusing[J]. Photonics Res, 8, 830-843(2020).

    [21] Xue C H, Lou Q, Chen Z N. Broadband double-layered Huygens’ Metasurface lens antenna for 5G millimeter-wave systems[J]. IEEE Trans Antennas Propag, 68, 1468-1476(2020).

    [22] Lin D M, Fan P Y, Hasman E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014).

    [23] Fang C Z, Yang Q Y, Yuan Q C et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces[J]. Opto-Electron Adv, 4, 200030(2021).

    [24] Yue Z, Li J T, Li J et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electron Sci, 1, 210014(2022).

    [25] Li J T, Wang G C, Yue Z et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization[J]. Opto-Electron Adv, 5, 210062(2022).

    [26] Liu Z Q, Tan W Y, Fu G L et al. Multipolar silicon-based resonant meta-surface for electro-optical modulation and sensing[J]. Opt Lett, 48, 2969-2972(2023).

    [27] Zhu L, Dong L, Guo J et al. Polarization conversion based on Mie-type electromagnetically induced transparency (EIT) effect in all-dielectric metasurface[J]. Plasmonics, 13, 1971-1976(2018).

    [28] Chen M, Cai J J, Sun W et al. High-efficiency all-dielectric metasurfaces for broadband polarization conversion[J]. Plasmonics, 13, 21-29(2018).

    [29] Chen J, Wang D P, Si G Y et al. Planar peristrophic multiplexing metasurfaces[J]. Opto-Electron Adv, 6, 220141(2023).

    [30] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 10, 308-312(2015).

    [31] Jiang S, Chen C, Zhang H L et al. Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM)[J]. Opt Express, 26, 6466-6477(2018).

    [32] Li X N, Zhou L, Zhao G Z. Terahertz vortex beam generation based on reflective metasurface[J]. Acta Phys Sin, 68, 238101(2019).

    [33] Sun S, Yang L J, Sha W. Offset-fed vortex wave generator based on reflective metasurface[J]. Acta Phys Sin, 70, 198401(2021).

    [34] Ye W M, Li X, Liu J et al. Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces[J]. Opt Express, 24, 25805-25815(2016).

    [35] Gong Z J, Wu C, Fang C Q et al. Broadband efficient vortex beam generation with metallic helix array[J]. Appl Phys Lett, 113, 071104(2018).

    [36] Xie X, Li X, Pu M B et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion[J]. Adv Funct Mater, 28, 1706673(2018).

    [37] Xie X, Liu K P, Pu M B et al. All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation[J]. Nanophotonics, 9, 3209-3215(2020).

    [38] Liu Z Q, Liu G Q, Fu G L et al. All-metal meta-surfaces for narrowband light absorption and high performance sensing[J]. J Phys D Appl Phys, 49, 445104(2016).

    [39] Hulkkonen H, Sah A, Niemi T. All-metal broadband optical absorbers based on block copolymer nanolithography[J]. ACS Appl Mater Interfaces, 10, 42941-42947(2018).

    [40] Mattiucci N, Trimm R, D'Aguanno G et al. Tunable, narrow-band, all-metallic microwave absorber[J]. Appl Phys Lett, 101, 141115(2012).

    [41] Li Z Y, Butun S, Aydin K. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces[J]. ACS Nano, 8, 8242-8248(2014).

    [42] Liu Z Q, Liu G Q, Liu X S et al. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity[J]. Nanotechnology, 26, 235702(2015).

    [43] Zhang K, Deng R X, Song L X et al. Broadband near-infrared absorber based on all metallic metasurface[J]. Materials, 12, 3568(2019).

    [44] Liu Y M, Zhang X. Metasurfaces for manipulating surface plasmons[J]. Appl Phys Lett, 103, 141101(2013).

    [45] Liu M J, Li T Y, Ge Q et al. Phase modulation mechanism and research progress of multifunctional metasurfaces[J]. Acta Opt Sin, 42, 2126004(2022).

    [46] Xie X, Pu M B, Huang Y J et al. Heat resisting metallic meta-skin for simultaneous microwave broadband scattering and infrared invisibility based on catenary optical field[J]. Adv Mater Technol, 4, 1800612(2019).

    [47] Cai J X, Zhang F, Pu M B et al. Broadband and high-efficiency photonic spin-Hall effect with all-metallic metasurfaces[J]. Opt Express, 30, 14938-14947(2022).

    [48] Xie X, Pu M B, Liu K P et al. High-efficiency and tunable circular-polarization beam splitting with a liquid-filled all-metallic catenary meta-mirror[J]. Adv Mater Technol, 4, 1900334(2019).

    [49] Chen L, Shao Z L, Liu J et al. Reflective quasi-continuous metasurface with continuous phase control for light focusing[J]. Materials, 14, 2147(2021).

    [50] Cai J X, Zhang F, Pu M B et al. All-metallic high-efficiency generalized pancharatnam–berry phase metasurface with chiral meta-atoms[J]. Nanophotonics, 11, 1961-1968(2022).

    [51] Luo J, Wang Y H, Pu M B et al. Multiple rotational doppler effect induced by a single spinning meta-atom[J]. Phys Rev Appl, 19, 044064(2023).

    [53] Pu M B, Ma X L, Guo Y H et al. Theory of microscopic meta-surface waves based on catenary optical fields and dispersion[J]. Opt Express, 26, 19555-19562(2018).

    [54] Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 44, 255-275(2017).

    [55] Xie X, Pu M B, Jin J J et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms[J]. Phys Rev Lett, 126, 183902(2021).

    [56] Guo Y H, Pu M B, Zhang F et al. Classical and generalized geometric phase in electromagnetic metasurfaces[J]. Photonics Insights, 1, R03(2022).

    [57] Pu M B, Li X, Ma X L et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Sci Adv, 1, e1500396(2015).

    [58] Zhang M, Pu M B, Zhang F et al. Plasmonic metasurfaces for switchable photonic spin– orbit interactions based on phase change materials[J]. Adv Sci, 5, 1800835(2018).

    [59] Guo Y H, Ma X L, Pu M B et al. High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens[J]. Adv Opt Mater, 6, 1800592(2018).

    [60] Guo Y H, Zhang Z J, Pu M B et al. Spoof plasmonic metasurfaces with catenary dispersion for two-dimensional wide-angle focusing and imaging[J]. iScience, 21, 145-156(2019).

    [61] Zhao L, Liu H, He Z H et al. All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth[J]. Appl Opt, 57, 1757-1764(2018).

    [62] Song M W, Li X, Pu M B et al. Color display and encryption with a plasmonic polarizing metamirror[J]. Nanophotonics, 7, 323-331(2018).

    [63] Zhou X T, Jin R C, Wang J et al. All-metal metasurface polarization converter in visible region with an in-band function[J]. Appl Phys Express, 12, 092010(2019).

    [64] Yan J C, Li Z K, Zhang Y et al. Trapped-mode resonances in all-metallic metasurfaces comprising rectangular-hole dimers with broken symmetry[J]. J Appl Phys, 126, 213102(2019).

    [65] Wu P H, Wang Y Y, Yi Z et al. A near-infrared multi-band perfect absorber based on 1D gold grating fabry-perot structure[J]. IEEE Access, 8, 72742-72748(2020).

    [67] Li L X, Zong X Y, Liu Y F. All-metallic metasurfaces towards high-performance magneto-plasmonic sensing devices[J]. Photonics Res, 8, 1742-1748(2020).

    [68] Shi Y Y, Yang R, Dai C J et al. Broadband diffraction-free on-chip propagation along hybrid metallic grating metasurfaces in the visible frequency[J]. J Phys D Appl Phys, 54, 044001(2021).

    [69] Xiong X, Wang X, Wang Z H et al. Constructing an achromatic polarization-dependent bifocal metalens with height-gradient metastructures[J]. Opt Lett, 46, 1193-1196(2021).

    [70] Du W J, Lou Z L, Chen X S et al. Multifunctional metasurfaces integrating near-field display and 3D holography[J]. J Phys D Appl Phys, 55, 105102(2022).

    [71] Zhang F, Pu M B, Gao P et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces[J]. Adv Sci, 7, 1903156(2020).

    [72] Cheng Y Z, Yang D R, Li X C. Broadband reflective dual-functional polarization convertor based on all-metal metasurface in visible region[J]. Phys B Condens Matter, 640, 414047(2022).

    [73] Wang M C, Cheng Y Z, Wu L. Ultra-broadband high-efficiency circular polarization conversion and terahertz wavefront manipulation based on an all-metallic reflective metasurface[J]. Appl Opt, 61, 4833-4842(2022).

    [74] Zhu J F, Liao S W, Xue Q. 3-D printed millimeter-wave metal-only dual-band circularly polarized reflectarray[J]. IEEE Trans Antennas Propag, 70, 9357-9364(2022).

    [75] Bai G D, Ma Q, Cao W K et al. Manipulation of electromagnetic and acoustic wave behaviors via shared digital coding metallic metasurfaces[J]. Adv Intell Syst, 1, 1900038(2019).

    [76] Chu H C, Lai Y. Ultrathin invisibility cloaks based on metasurfaces[J]. Infrared Laser Eng, 49, 20201038(2020).

    [77] Ji C, Peng J Q, Yuan L M et al. All-ceramic coding metastructure for high-temperature RCS reduction[J]. Adv Eng Mater, 24, 2101503(2022).

    [78] Li Z G, Wang W, Rosenmann D et al. All-metal structural color printing based on aluminum plasmonic metasurfaces[J]. Opt Express, 24, 20472-20480(2016).

    [79] Xu C L, Meng Y Y, Wang J F et al. Optically transparent hybrid metasurfaces for low infrared emission and wideband microwave absorption[J]. Acta Photonica Sin, 50, 0416001(2021).

    [80] Yang K, Shi S Q, Li C X et al. Broadband stealth devices based on encoded metamaterials[J]. Appl Opt, 61, 10171-10177(2022).

    [81] Huang S N, Fan Q, Xu C L et al. A visible-light-transparent camouflage-compatible flexible metasurface for infrared-radar stealth applications[J]. J Phys D Appl Phys, 54, 015001(2021).

    [82] Buhara E, Ghobadi A, Ozbay E. Adaptive visible and short-wave infrared camouflage using a dynamically tunable metasurface[J]. Opt Lett, 46, 4777-4780(2021).

    [83] Feng X D, Xie X, Pu M B et al. Hierarchical metamaterials for laser-infrared-microwave compatible camouflage[J]. Opt Express, 28, 9445-9453(2020).

    [84] Feng X D, Pu M B, Zhang F et al. Large-area low-cost multiscale-hierarchical metasurfaces for multispectral compatible camouflage of dual-band lasers, infrared and microwave[J]. Adv Funct Mater, 32, 2205547(2022).

    [85] Huang J K, Wang Y T, Yuan L M et al. Large-area and flexible plasmonic metasurface for laser–infrared compatible camouflage[J]. Laser Photonics Rev, 17, 2200616(2023).

    Tools

    Get Citation

    Copy Citation Text

    Bo Liu, Xin Xie, Xuetao Gan, Jianlin Zhao. Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves[J]. Opto-Electronic Engineering, 2023, 50(9): 230119-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: May. 20, 2023

    Accepted: Aug. 28, 2023

    Published Online: Jan. 24, 2024

    The Author Email: Xin Xie (谢鑫)

    DOI:10.12086/oee.2023.230119

    Topics