Acta Optica Sinica, Volume. 39, Issue 8, 0810001(2019)

Infrared Dim-Small Target Detection Based on Robust Principal Component Analysis and Multi-Point Constant False Alarm

Mingyang Ma1,2, Dejiang Wang1、*, He Sun1, and Tao Zhang1
Author Affiliations
  • 1 Key Laboratory of Aviation Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
  • 2 School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(14)
    Energy diffusion of small target. (a) Transverse diffusion; (b) non-diffusion; (c) peripheral diffusion; (d)-(f) three-dimensional distributions of Figs. 1(a)-(c), respectively
    SNR of small target in successive 100 frames
    Flow chart of proposed method
    Constant false alarm detection windows of different pixels. (a) Single pixel; (b) multi-pixel
    Typical energy distribution of target when M=3
    Effect of M value on probability of detection
    Effect of SNR on probability of detection at different M values. (a) M=3; (b) M=4
    Results of proposed algorithm. (a)-(d) Original images; (e)-(h) results of improved threshold segmentation algorithm based on RPCA; (i)-(l) results of multi-point constant false alarm detection
    Processing results of different algorithms. (a)(b) Original images; (c)(d) improved algorithm based on RPCA; (e)(f) top hat transformation algorithm; (g)(h) BM3D algorithm
    Results of different constant false alarm detection algorithms. (a)(b) Original images; (c)(d) MCFAR algorithm; (e)(f) CFAR algorithm; (g)(h) ACFAR algorithm
    • Table 1. Related parameters of targets in Fig. 8

      View table

      Table 1. Related parameters of targets in Fig. 8

      ParameterRsnFig. 8(a)Fig. 8(b)Fig. 8(c)Fig. 8(d)
      1.8272.782.2272.3473.723.88
      Location(269,143)(316,182)(242,91)(312,127)(79,93)(105,219)
    • Table 2. Related parameters of targets in Fig. 9

      View table

      Table 2. Related parameters of targets in Fig. 9

      ParameterRsnFig. 9(a)Fig. 9(b)
      2.232.352.572.23
      Location(242,91)(312,127)(239,380)(314,420)
    • Table 3. Number of candidate points for segmentation algorithms

      View table

      Table 3. Number of candidate points for segmentation algorithms

      FrameImproved RPCATop hat algorithmBM3D algorithm
      Fig. 9(a)3450011249
      Fig. 9(b)2253531143
    • Table 4. Results of different constant false alarm detection algorithms

      View table

      Table 4. Results of different constant false alarm detection algorithms

      MethodRDR /%RFAR /%
      Improved RPCA+CFAR80.093.9
      Improved RPCA+ACFAR67.684.9
      Improved RPCA+MCFAR95.637.8
    Tools

    Get Citation

    Copy Citation Text

    Mingyang Ma, Dejiang Wang, He Sun, Tao Zhang. Infrared Dim-Small Target Detection Based on Robust Principal Component Analysis and Multi-Point Constant False Alarm[J]. Acta Optica Sinica, 2019, 39(8): 0810001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Feb. 20, 2019

    Accepted: Apr. 1, 2019

    Published Online: Aug. 7, 2019

    The Author Email: Dejiang Wang (wangdj@ciomp.ac.cn)

    DOI:10.3788/AOS201939.0810001

    Topics