Journal of Inorganic Materials, Volume. 39, Issue 12, 1348(2024)
[1] YANG L, LIU Z, ZHU S et al. Ni-based layered double hydroxide catalysts for oxygen evolution reaction[J]. Materials Today Physics, 100292(2021).
[2] ZHOU Q, LIAO L, BIAN Q et al. Engineering in-plane nickel phosphide heterointerfaces with interfacial sp H-P hybridization for highly efficient and durable hydrogen evolution at 2 A·cm-2[J]. Small, 18, 2105642(2022).
[4] AN P, YANG B, ZHANG N et al. Hybrid TaON/LaTiO2N photoelectrode for water oxidation[J]. Transportation Safety and Environment, 1, 212(2019).
[5] WAN X, ZHAO Y, LI Z et al. Emerging polymeric electrospun fibers: from structural diversity to application in flexible bioelectronics and tissue engineering[J]. Exploration, 2, 20210029(2022).
[9] RASHID M M, AL MESFER M K, NASEEM H et al. Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high-temperature water electrolysis[J]. International Journal of Engineering and Advanced Technology, 4, 80(2015).
[10] STIBER S, SATA N, MORAWIETZ T et al. A high-performance, durable and low-cost proton exchange membrane electrolyser with stainless steel components[J]. Energy & Environmental Science, 15, 109(2022).
[11] CARMO M, FRITZ D L, MERGEL J et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 38, 4901(2013).
[12] CHAE K J, CHOI M, AJAYI F F et al. Mass transport through a proton exchange membrane (nafion) in microbial fuel cells[J]. Energy & Fuels, 22, 80(2008).
[13] MAURITZ K A, MOORE R B. State of understanding of nafion[J]. Chemical Reviews, 104, 4535(2004).
[14] LAGUNA-BERCERO M A. Recent advances in high-temperature electrolysis using solid oxide fuel cells: a review[J]. Journal of Power Sources, 4(2012).
[15] KUPKA J, BUDNIOK A. Electrolytic oxygen evolution on Ni- Co-P alloys[J]. Journal of Applied Electrochemistry, 20, 1015(1990).
[16] GUANG H L, ZHU S L, LIANG Y Q et al. Highly efficient nanoporous CoBP electrocatalyst for hydrogen evolution reaction[J]. Rare Metals, 40, 1031(2021).
[17] WANG C, SHANG H, JIN L et al. Advances in hydrogen production from electrocatalytic seawater splitting[J]. Nanoscale, 13, 7897(2021).
[19] CONG Y, CHEN X, MEI Y et al. CeO2 decorated bimetallic phosphide nanowire arrays for enhanced oxygen evolution reaction electrocatalysis
[20] YANG J, WANG Y, YANG J et al. Quench-induced surface engineering boosts alkaline freshwater and seawater oxygen evolution reaction of porous NiCo2O4 nanowires[J]. Small, 18, 2106187(2022).
[22] UL HAQ T, MANSOUR S, HAIK Y. Electronic and structural modification of Mn3O4 nanosheets for selective and sustained seawater oxidation[J]. ACS Applied Materials & Interfaces, 14, 20443(2022).
[23] ZHANG L, ZHANG R, GE R et al. Facilitating active species generation by amorphous NiFe-Bi layer formation on NiFe-LDH nanoarray for efficient electrocatalytic oxygen evolution at alkaline pH[J]. Chemistry — A European Journal, 23, 11499(2017).
[24] LI P, ZHAO S, HUANG Y et al. Corrosion resistant multilayered electrode comprising Ni3N nanoarray overcoated with NiFe-phytate complex for boosted oxygen evolution in seawater electrolysis[J]. Advanced Energy Materials, 14, 2303360(2024).
[25] SONG S, WANG Y, ZHOU S et al. One-step synthesis of heterostructural MoS2-(FeNi)9S8 on Ni-Fe foam synergistically boosting for efficient fresh/seawater electrolysis[J]. ACS Applied Energy Materials, 5, 1810(2022).
[26] SONG S, WANG Y, LIU X et al. Synthesis of Mo-doped NiFe- phosphate hollow bird-nest architecture for efficient and stable seawater electrolysis[J]. Applied Surface Science, 154588(2022).
[27] SUN H, SUN J, SONG Y et al. Nickel-cobalt hydrogen phosphate on nickel nitride supported on nickel foam for alkaline seawater electrolysis[J]. ACS Applied Materials & Interfaces, 14, 22061(2022).
[28] SONG S, ZANG J, ZHOU S et al. Self-supported amorphous nickel-iron phosphorusoxides hollow spheres on Ni-Fe foam for highly efficient overall water splitting[J]. Electrochimica Acta, 138996(2021).
[29] WU L, YU L, ZHANG F et al. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting[J]. Advanced Functional Materials, 31, 2006484(2021).
[30] LI M, PAN X, JIANG M et al. Interface engineering of oxygen- vacancy-rich CoP/CeO2 heterostructure boosts oxygen evolution reaction[J]. Chemical Engineering Journal, 125160(2020).
[31] WANG B, XI P, SHAN C.
[32] WANG Y, TAO S, LIN H et al. NaBH4 induces a high ratio of Ni3+/Ni2+ boosting OER activity of the NiFe LDH electrocatalyst[J]. RSC Advances, 10, 33475(2020).
[33] MAHALA C, DEVI SHARMA M, BASU M. Fe-doped nickel hydroxide/nickel oxyhydroxide function as an efficient catalyst for the oxygen evolution reaction[J]. ChemElectroChem, 6, 3488(2019).
Get Citation
Copy Citation Text
Wenyan XIAO, Yan FU, Shubin YANG, Jie ZHU, Zhaoyang CHENG, Xiaoxu WEN, Jiafan TANG, Liang YU, Qian ZHANG.
Category:
Received: Apr. 8, 2024
Accepted: --
Published Online: Jan. 21, 2025
The Author Email: Qian ZHANG (zhangqian@swpu.edu.cn)