Acta Optica Sinica, Volume. 40, Issue 9, 0915005(2020)
3D Object Detection Based on Iterative Self-Training
[1] Ku J, Mozifian M, Lee J et al. Joint 3D proposal generation and object detection from view aggregation. [C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 1-5, 2018, Madrid. New York: IEEE, 1-8(2018).
[2] Wirges S, Fischer T, Stiller C et al. Object detection and classification in occupancy grid maps using deep convolutional networks. [C]//2018 21st International Conference on Intelligent Transportation Systems (ITSC), November 4-7, 2018, Maui, HI. New York: IEEE, 3530-3535(2018).
[3] Zeng Y M, Hu Y, Liu S C et al. RT3D: real-time 3-D vehicle detection in LiDAR point cloud for autonomous driving[J]. IEEE Robotics and Automation Letters, 3, 3434-3440(2018).
[5] Shi S S, Wang X G, Li H S. PointRCNN: 3D object proposal generation and detection from point cloud. [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA. New York: IEEE, 770-779(2019).
[7] Ku J, Pon A D, Waslander S L. Monocular 3D object detection leveraging accurate proposals and shape reconstruction. [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA. New York: IEEE, 11867-11876(2019).
[11] Chen X, Kundu K, Zhu Y et al. 3D object proposals for accurate object class detection. [C]// Proceedings of the 28 th International Conference on Neural Information Processing Systems, December 7-12, 2015, Montreal, Quebec, Canada. New York: Curran Associates, 424-432(2015).
[12] Wang Y, Chao W L, Garg D et al. Pseudo-LiDAR from visual depth estimation: bridging the gap in 3D object detection for autonomous driving. [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA. New York: IEEE, 8445-8453(2019).
[13] Konigshof H, Salscheider N O, Stiller C. Realtime 3D object detection for automated driving using stereo vision and semantic information. [C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC), October 27-30, 2019, Auckland, New Zealand. New York: IEEE, 19211370(2019).
[14] Chang J R, Chen Y S. Pyramid stereo matching network. [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT. New York: IEEE, 5410-5418(2018).
[15] Cheng X J, Wang P, Yang R G[M]. Depth estimation via affinity learned with convolutional spatial propagation network, 108-125(2018).
[17] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite. [C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA. New York: IEEE, 3354-3361(2012).
[18] Menze M, Heipke C, Remote Sensing, Spatial Information Sciences. II-, 3/W5, 427-434(2015).
[20] Geiger A, Lenz P, Stiller C et al. Vision meets robotics: The KITTI dataset[J]. The International Journal of Robotics Research, 32, 1231-1237(2013).
[21] Guney F, Geiger A. Displets: Resolving stereo ambiguities using object knowledge. [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 4165-4175(2015).
[22] Abu Alhaija H, Mustikovela S K, Mescheder L et al. Augmented reality meets computer vision: efficient data generation for urban driving scenes[J]. International Journal of Computer Vision, 126, 961-972(2018).
[23] Qi C R, Liu W, Wu C X et al. Frustum PointNets for 3D object detection from RGB-D data. [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE, 918-927(2018).
[24] Mayer N, Ilg E, Hausser P et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 4040-4048(2016).
[26] Khamis S, Fanello S, Rhemann C et al[M]. StereoNet: guided hierarchical refinement for real-time edge-aware depth prediction, 596-613(2018).
[27] Li P L, Chen X Z, Shen S J. Stereo R-CNN based 3D object detection for autonomous driving. [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA. New York: IEEE, 7644-7652(2019).
Get Citation
Copy Citation Text
Kangru Wang, Jingang Tan, Liang Du, Lili Chen, Jiamao Li, Xiaolin Zhang. 3D Object Detection Based on Iterative Self-Training[J]. Acta Optica Sinica, 2020, 40(9): 0915005
Category: Machine Vision
Received: Nov. 25, 2019
Accepted: Feb. 10, 2020
Published Online: May. 6, 2020
The Author Email: Kangru Wang (wangkangru@mail.sim.ac.cn)