Infrared and Laser Engineering, Volume. 50, Issue 12, 20210738(2021)

Development and application of mask modulated correlated imaging (Invited)

[in Chinese]1, [in Chinese]1、*, [in Chinese]2, and [in Chinese]1,2
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao 266237, China
  • 2Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao 266237, China
  • show less
    References(77)

    [1] Stantchev R I, Yu X, Blu T, et al. Real-time terahertz imaging with a single-pixel detector[J]. Nature Communications, 11, 1-8(2020).

    [2] Stantchev R I, Sun B, Hornett S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2, e1600190(2016).

    [3] Watts C M, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 8, 605-609(2014).

    [4] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope[J]. Optica, 1, 285-289(2014).

    [5] Gibson G M, Sun B, Edgar M P, et al. Real-time imaging of methane gas leaks using a single-pixel camera[J]. Optics Express, 25, 2998-3005(2017).

    [6] Pelliccia D, Rack A, Scheel M, et al. Experimental X-ray ghost imaging[J]. Physical Review Letters, 117, 113902(2016).

    [7] Yu H, Lu R, Han S, et al. Fourier-transform ghost imaging with hard X-rays[J]. Physical Review Letters, 117, 113901(2016).

    [8] Zhang A X, He Y H, Wu L A, et al. Tabletop x-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2018).

    [9] Schori A, Shwartz S. X-ray ghost imaging with a laboratory source[J]. Optics Express, 25, 14822-14828(2017).

    [10] Khakimov R I, Henson B M, Shin D K, et al. Ghost imaging with atoms[J]. Nature, 540, 100-103(2016).

    [11] Hodgman S S, Bu W, Mann S B, et al. Higher-order quantum ghost imaging with ultracold atoms[J]. Physical Review Letters, 122, 233601(2019).

    [12] Kingston A M, Myers G R, Pelliccia D, et al. Neutron ghost imaging[J]. Physical Review A, 101, 053844(2020).

    [13] He Y H, Huang Y Y, Zeng Z R, et al. Single- pixel imaging with neutrons[J]. Science Bulletin, 66, 133-138(2021).

    [14] Li S, Cropp F, Kabra K, et al. Electron ghost imaging[J]. Physical Review Letters, 121, 114801(2018).

    [15] Trimeche A, Lopez C, Comparat D, et al. Ion and electron ghost imaging[J]. Physical Review Research, 2, 043295(2020).

    [16] Jiang W, Jiao J, Guo Y, et al. Single-pixel camera based on a spinning mask[J]. Optics Letters, 46, 4859-4862(2021).

    [17] Rousset F, Ducros N, Peyrin F, et al. Time-resolved multispectral imaging based on an adaptive single-pixel camera[J]. Optics Express, 26, 10550-10558(2018).

    [18] Bian L, Suo J, Situ G, et al. Multispectral imaging using a single bucket detector[J]. Scientific Reports, 6, 1-7(2016).

    [19] Li Z, Suo J, Hu X, et al. Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation[J]. Scientific Reports, 7, 41435(2017).

    [20] Jin S, Hui W, Wang Y, et al. Hyperspectral imaging using the single-pixel Fourier transform technique[J]. Scientific Reports, 7, 45209(2017).

    [21] Magalhães F, Araújo F M, Correia M, et al. High-resolution hyperspectral single-pixel imaging system based on compressive sensing[J]. Optical Engineering, 51, 071406(2012).

    [22] Gattinger P, Kilgus J, Zorin I, et al. Broadband near-infrared hyperspectral single pixel imaging for chemical characterization[J]. Optics Express, 27, 12666-12672(2019).

    [23] Sun B, Edgar M P, Bowman R, et al. 3 D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013).

    [24] Salvador-Balaguer E, Latorre-Carmona P, Chabert C, et al. Low-cost single-pixel 3 D imaging by using an LED array[J]. Optics Express, 26, 15623-15631(2018).

    [25] Zhang Z, Zhong J. Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels[J]. Optics Letters, 41, 2497-2500(2016).

    [26] Zhang Z, Jiao S, Yao M, et al. Secured single-pixel broadcast imaging[J]. Optics Express, 26, 14578-14591(2018).

    [27] Chen W, Chen X. Marked ghost imaging[J]. Applied Physics Letters, 104, 251109(2014).

    [28] Chen W, Chen X. Ghost imaging for three-dimensional optical security[J]. Applied Physics Letters, 103, 221106(2013).

    [29] Yang Z, Zhao L, Zhao X, et al. Lensless ghost imaging through the strongly scattering medium[J]. Chinese Physics B, 25, 024202(2015).

    [30] Li F, Zhao M, Tian Z, et al. Compressive ghost imaging through scattering media with deep learning[J]. Optics Express, 28, 17395-17408(2020).

    [31] Dutta R, Manzanera S, Gambín-Regadera A, et al. Single-pixel imaging of the retina through scattering media[J]. Biomedical Optics Express, 10, 4159-4167(2019).

    [32] Zhao J, Dai J, Braverman B, et al. Compressive ultrafast pulse measurement via time-domain single-pixel imaging[J]. Optica, 8, 1176-1185(2021).

    [33] Pian Q, Yao R, Sinsuebphon N, et al. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging[J]. Nature Photonics, 11, 411-414(2017).

    [34] Ota K, Hayasaki Y. Complex-amplitude single-pixel imaging[J]. Optics Letters, 43, 3682-3685(2018).

    [35] Liu Y, Suo J, Zhang Y, et al. Single-pixel phase and fluorescence microscope[J]. Optics Express, 26, 32451-32462(2018).

    [36] Hu X, Zhang H, Zhao Q, et al. Single-pixel phase imaging by Fourier spectrum sampling[J]. Applied Physics Letters, 114, 051102(2019).

    [37] Li X, Sun Y, He Y, et al. Quantitative imaging for optical field via a single-pixel detector[J]. Signal Processing, 108173(2021).

    [38] Musarra G, Lyons A, Conca E, et al. Non-line-of-sight three-dimensional imaging with a single-pixel camera[J]. Physical Review Applied, 12, 011002(2019).

    [39] Junek J, Žídek K. Fluorescence lifetime imaging via spatio-temporal speckle patterns in a single-pixel camera configuration[J]. Optics Express, 29, 5538-5551(2021).

    [40] Vinu R V, Chen Z, Singh R K, et al. Ghost diffraction holographic microscopy[J]. Optica, 7, 1697-1704(2020).

    [41] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429(1995).

    [42] Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).

    [43] Valencia A, Scarcelli G, D’Angelo M, et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 94, 063601(2005).

    [44] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [45] Futia G, Schlup P, Winters D G, et al. Spatially-chirped modulation imaging of absorbtion and fluorescent objects on single-element optical detector[J]. Optics Express, 19, 1626-1640(2011).

    [46] Shen H, Gan L, Newman N, et al. Spinning disk for compressive imaging[J]. Optics Letters, 37, 46-48(2012).

    [47] Ma Y, Grant J, Saha S, et al. Terahertz single pixel imaging based on a Nipkow disk[J]. Optics Letters, 37, 1484-1486(2012).

    [48] Higley D J, Winters D G, Bartels R A. Two-dimensional spatial-frequency-modulated imaging through parallel acquisition of line images[J]. Optics Letters, 38, 1763-1765(2013).

    [49] Winters D G, Bartels R A. Two-dimensional single-pixel imaging by cascaded orthogonal line spatial modulation[J]. Optics Letters, 40, 2774-2777(2015).

    [50] Vallés A, He J, Ohno S, et al. Broadband high-resolution terahertz single-pixel imaging[J]. Optics Express, 28, 28868-28881(2020).

    [51] Hayasaki Y, Sato R. Single-pixel camera with hole-array disk[J]. Optical Review, 1-6(2020).

    [52] Hahamovich E, Monin S, Hazan Y, et al. Single pixel imaging at megahertz switching rates via cyclic Hadamard masks[J]. Nature Communications, 12, 1-6(2021).

    [53] Grant D M, Elson D S, Schimpf D, et al. Optically sectioned fluorescence lifetime imaging using a Nipkow disk microscope and a tunable ultrafast continuum excitation source[J]. Optics Letters, 30, 3353-3355(2005).

    [54] Yin S, Lu G, Zhang J, et al. Kinoform-based nipkow disk for a confocal microscope[J]. Applied Optics, 34, 5695-5698(1995).

    [55] Golay M J E. Multi-slit spectrometry[J]. JOSA, 39, 437-444(1949).

    [56] Golay M J E. Static multislit spectrometry and its application to the panoramic display of infrared spectra[J]. JOSA, 41, 468-472(1951).

    [57] Ibbett R N, Aspinall D, Grainger J F. Real-time multiplexing of dispersed spectra in any wavelength region[J]. Applied Optics, 7, 1089-1093(1968).

    [58] Decker J A, Harwitt M O. Sequential encoding with multislit spectrometers[J]. Applied Optics, 7, 2205-2209(1968).

    [59] Gottlieb P. A television scanning scheme for a detector-noise- limited system[J]. IEEE Transactions on Information Theory, 14, 428-433(1968).

    [60] Decker J A. Hadamard –transform image scanning[J]. Applied Optics, 9, 1392-1395(1970).

    [61] Swift R D, Wattson R B, Decker J A, et al. Hadamard transform imager and imaging spectrometer[J]. Applied Optics, 15, 1595-1609(1976).

    [62] Harwit M. Spectrometric imager[J]. Applied Optics, 10, 1415-1421(1971).

    [63] Moharir P S. Two-dimensional encoding masks for Hadamard spectrometric imager[J]. IEEE Transactions on Electromagnetic Compatibility, 126-130(1974).

    [64] [64] Brown R H, Twiss R Q. A Test of a New Type of Stellar Interferometer on Sirius[M]. Boston: Harvard University Press, 2013: 812.

    [65] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 79, 053840(2009).

    [66] Xu Z H, Chen W, Penuelas J, et al. 1000 fps computational ghost imaging using LED-based structured illumination[J]. Optics Express, 26, 2427-2434(2018).

    [67] Zhao W, Chen H, Yuan Y, et al. Ultrahigh-speed color imaging with single-pixel detectors at low light level[J]. Physical Review Applied, 12, 034049(2019).

    [68] Jiang W, Li X, Peng X, et al. Imaging high-speed moving targets with a single-pixel detector[J]. Optics Express, 28, 7889-7897(2020).

    [69] Ota S, Horisaki R, Kawamura Y, et al. Ghost cytometry[J]. Science, 360, 1246-1251(2018).

    [70] Ma S, Liu Z, Wang C, et al. Ghost imaging LiDAR via sparsity constraints using push-broom scanning[J]. Optics Express, 27, 13219-13228(2019).

    [71] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, 121105(2008).

    [72] Duan P, Wang Y, Xu D, et al. Single pixel imaging with tunable terahertz parametric oscillator[J]. Applied Optics, 55, 3670-3675(2016).

    [73] Miao J, Charalambous P, Kirz J, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 400, 342-344(1999).

    [74] Thibault P, Dierolf M, Menzel A, et al. High-resolution scanning X-ray diffraction microscopy[J]. Science, 321, 379-382(2008).

    [75] Chapman H N, Barty A, Bogan M J, et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser[J]. Nature Physics, 2, 839-843(2006).

    [76] Klein Y, Schori A, Dolbnya I P, et al. X-ray computational ghost imaging with single-pixel detector[J]. Optics Express, 27, 3284-3293(2019).

    [77] He Y H, Zhang A X, Li M F, et al. High-resolution sub-sampling incoherent X-ray imaging with a single-pixel detector[J]. APL Photonics, 5, 056102(2020).

    Tools

    Get Citation

    Copy Citation Text

    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Development and application of mask modulated correlated imaging (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210738

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue—Single-pixel imaging

    Received: Jul. 20, 2021

    Accepted: --

    Published Online: Feb. 9, 2022

    The Author Email: (wenjie_jiang@mail.sdu.edu.cn)

    DOI:10.3788/IRLA20210738

    Topics