Chinese Journal of Lasers, Volume. 48, Issue 2, 0202015(2021)

Preparation Methods, Thermoelectric Properties, and Potential Applications of SnSe

Yutong Ran, Wenduo Chen, and Hongwei Zhu*
Author Affiliations
  • School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
  • show less
    References(114)

    [2] Shi G S, Kioupakis E. Quasiparticle band structures and thermoelectric transport properties of p-type SnSe[J]. Journal of Applied Physics, 117, 065103(2015).

    [3] Subramanian B, Sanjeeviraja C, Jayachandran M. Brush plating of tin(II) selenide thin films[J]. Journal of Crystal Growth, 234, 421-426(2002).

    [5] Sales B C, Mandrus D, Williams R K. Filled skutterudite antimonides: a new class of thermoelectric materials[J]. Science, 272, 1325-1328(1996).

    [6] Hsu K F. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit[J]. Science, 303, 818-821(2004).

    [7] Poudel B, Hao Q, Ma Y et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science, 320, 634-638(2008).

    [8] Heremans J P, Jovovic V, Toberer E S et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J]. Science, 321, 554-557(2008).

    [9] Rhyee J S, Lee K H, Lee S M et al. Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals[J]. Nature, 459, 965-968(2009).

    [11] Zhao L D, Tan G, Hao S et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe[J]. Science, 351, 141-144(2016).

    [12] Duong A T, Nguyen V Q, Duvjir G et al. Achieving ZT=2.2 with Bi-doped n-type SnSe single crystals[J]. Nature Communications, 7, 13713(2016).

    [13] Chen Y X, Ge Z H, Yin M J et al. Understanding of the extremely low thermal conductivity in high-performance polycrystalline SnSe through potassium doping[J]. Advanced Functional Materials, 26, 6836-6845(2016).

    [14] Chen W H, Yang Z R, Lin F H et al. Nanostructured SnSe: hydrothermal synthesis and disorder-induced enhancement of thermoelectric properties at medium temperatures[J]. Journal of Materials Science, 52, 9728-9738(2017).

    [15] Zhang L J, Wang J L, Sun Q et al. Three-stage inter-orthorhombic evolution and high thermoelectric performance in Ag-doped nanolaminar SnSe polycrystals[J]. Advanced Energy Materials, 7, 1700573(2017).

    [16] Sassi S, Candolfi C, Vaney J B et al. Assessment of the thermoelectric performance of polycrystalline p-type SnSe[J]. Applied Physics Letters, 104, 212105(2014).

    [17] Zhang Q, Chere E K, Sun J Y et al. Studies on thermoelectric properties of n-type polycrystalline SnSe1-xSx by iodine doping[J]. Advanced Energy Materials, 5, 1500360(2015).

    [18] Chen Z G, Shi X L, Zhao L D et al. High-performance SnSe thermoelectric materials: progress and future challenge[J]. Progress in Materials Science, 97, 283-346(2018).

    [19] Huang Y C, Wang C, Chen X et al. First-principles study on intrinsic defects of SnSe[J]. RSC Advances, 7, 27612-27618(2017).

    [20] Shi X L, Chen Z G, Liu W D et al. Achieving high Figure of Merit in p-type polycrystalline Sn0.98Se via self-doping and anisotropy-strengthening[J]. Energy Storage Materials, 10, 130-138(2018).

    [21] Shi X L, Zheng K, Hong M et al. Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe via inducing intensive crystal imperfections and defect phonon scattering[J]. Chemical Science, 9, 7376-7389(2018).

    [22] Shi X L, Zheng K, Liu W D et al. Realizing high thermoelectric performance in n-type highly distorted Sb-doped SnSe microplates via tuning high electron concentration and inducing intensive crystal defects[J]. Advanced Energy Materials, 8, 1800775(2018).

    [23] Shi X L, Wu A Y, Feng T L et al. High thermoelectric performance in p-type polycrystalline Cd-doped SnSe achieved by a combination of cation vacancies and localized lattice engineering[J]. Advanced Energy Materials, 9, 1803242(2019).

    [24] Shi X L, Wu A Y, Liu W D et al. Polycrystalline SnSe with extraordinary thermoelectric property via nanoporous design[J]. ACS Nano, 12, 11417-11425(2018).

    [25] Boscher N D, Carmalt C J, Palgrave R G et al. Atmospheric pressure chemical vapour deposition of SnSe and SnSe2 thin films on glass[J]. Thin Solid Films, 516, 4750-4757(2008).

    [26] Martínez-Escobar D, Ramachandran M, Sánchez-Juárez A et al. Optical and electrical properties of SnSe2 and SnSe thin films prepared by spray pyrolysis[J]. Thin Solid Films, 535, 390-393(2013).

    [27] Hema Chandra G, Naveen Kumar J, Madhusudhana Rao N et al. Preparation and characterization of flash evaporated tin selenide thin films[J]. Journal of Crystal Growth, 306, 68-74(2007).

    [28] Hao L, Du Y, Wang Z et al. Wafer-size growth of 2D layered SnSe films for UV-Visible-NIR photodetector arrays with high responsitivity[J]. Nanoscale, 12, 7358-7365(2020).

    [29] Kumar N, Sharma V, Padha N et al. Influence of the substrate temperature on the structural, optical, and electrical properties of tin selenide thin films deposited by thermal evaporation method[J]. Crystal Research and Technology, 45, 53-58(2010).

    [30] Inoue T, Hiramatsu H, Hosono H et al. Heteroepitaxial growth of SnSe films by pulsed laser deposition using Se-rich targets[J]. Journal of Applied Physics, 118, 205302(2015).

    [31] Wang Z Y, Wang J F, Zang Y Y et al. Molecular beam epitaxy-grown SnSe in the rock-salt structure: an artificial topological crystalline insulator material[J]. Advanced Materials, 27, 4150-4154(2015).

    [32] Zhong Y J, Zhang L, Linseis V et al. High-quality textured SnSe thin films for self-powered, rapid-response photothermoelectric application[J]. Nano Energy, 72, 104742(2020).

    [33] Colin R, Drowart J. Thermodynamic study of tin selenide and tin telluride using a mass spectrometer[J]. Transactions of the Faraday Society, 60, 673-683(1964).

    [34] Hirayama C, Ichikawa Y. DeRoo A M. Vapor pressures of tin selenide and tin telluride[J]. The Journal of Physical Chemistry, 67, 1039-1042(1963).

    [35] Sharma R C, Chang Y A. The Se-Sn (selenium-tin) system[J]. Bulletin of Alloy Phase Diagrams, 7, 68-72(1986).

    [36] Efthimiopoulos I, Berg M, Bande A et al. Effects of temperature and pressure on the optical and vibrational properties of thermoelectric SnSe[J]. Physical Chemistry Chemical Physics, 21, 8663-8678(2019).

    [37] Kim S U, Duong A T, Cho S et al. A microscopic study investigating the structure of SnSe surfaces[J]. Surface Science, 651, 5-9(2016).

    [38] Zhang C D, Lian J C, Yi W et al. Surface structures of black phosphorus investigated with scanning tunneling microscopy[J]. The Journal of Physical Chemistry C, 113, 18823-18826(2009).

    [39] Nair P K, Barrios-Salgado E. Nair M T S. Cubic-structured tin selenide thin film as a novel solar cell absorber[J]. Physica Status Solidi A, 213, 2229-2236(2016).

    [40] Rehman S U, Butt F K, Hayat F et al. An insight into a novel cubic phase SnSe for prospective applications in optoelectronics and clean energy devices[J]. Journal of Alloys and Compounds, 733, 22-32(2018).

    [41] Shi G, Kioupakis E. Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe[J]. Nano Letters, 15, 6926-6931(2015).

    [42] Kutorasinski K, Wiendlocha B, Kaprzyk S et al. Electronic structure and thermoelectric properties of n- and p-type SnSe from first-principles calculations[J]. Physical Review B, 91, 205201(2015).

    [43] Kane E O. Band structure of indium antimonide[J]. Journal of Physics and Chemistry of Solids, 1, 249-261(1957).

    [44] Pei Y Z, Gibbs Z M, Gloskovskii A et al. Optimum carrier concentration in n-type PbTe thermoelectrics[J]. Advanced Energy Materials, 4, 1400486(2014).

    [45] Shi X L, Tao X Y, Zou J et al. High-performance thermoelectric SnSe: aqueous synthesis, innovations, and challenges[J]. Advanced Science, 7, 1902923(2020).

    [46] Liu W D, Chen Z G, Zou J. Eco-friendly higher manganese silicide thermoelectric materials: progress and future challenges[J]. Advanced Energy Materials, 8, 1800056(2018).

    [47] Li W, Zhou B Q, Li J et al. Single parabolic band behavior of thermoelectric p-type Cu4Mn2Te4[J]. Journal of Alloys and Compounds, 753, 93-99(2018).

    [48] Duvjir G, Min T, Thi Ly T et al. Origin of p-type characteristics in a SnSe single crystal[J]. Applied Physics Letters, 110, 262106(2017).

    [49] Xiao Y, Chang C, Pei Y L et al. Origin of low thermal conductivity in SnSe[J]. Physical Review B, 94, 125203(2016).

    [50] Chhowalla M, Liu Z F, Zhang H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets[J]. Chemical Society Reviews, 44, 2584-2586(2015).

    [51] Zhang Y S, Hao S Q, Zhao L D et al. Pressure induced thermoelectric enhancement in SnSe crystals[J]. Journal of Materials Chemistry A, 4, 12073-12079(2016).

    [52] Morelli D T, Jovovic V, Heremans J P. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors[J]. Physical Review Letters, 101, 035901(2008).

    [53] Nielsen M D, Ozolins V, Heremans J P. Lone pair electrons minimize lattice thermal conductivity[J]. Energy & Environmental Science, 6, 570-578(2013).

    [54] Li C W, Hong J, May A F et al. Orbitally driven giant phonon anharmonicity in SnSe[J]. Nature Physics, 11, 1063-1069(2015).

    [55] Hong M, Wang Y, Feng T et al. Strong phonon-phonon interactions securing extraordinary thermoelectric Ge1-xSbxTe with Zn-alloying-induced band alignment[J]. Journal of the American Chemical Society, 141, 1742-1748(2019).

    [56] Hong M, Chen Z G, Matsumura S et al. Nano-scale dislocations induced by self-vacancy engineering yielding extraordinary n-type thermoelectric Pb0.96-yInySe[J]. Nano Energy, 50, 785-793(2018).

    [57] Wei T R, Wu C F, Zhang X et al. Thermoelectric transport properties of pristine and Na-doped SnSe1-xTex polycrystals[J]. Physical Chemistry Chemical Physics, 17, 30102-30109(2015).

    [58] Nguyen V Q, Kim J, Cho S. A review of SnSe: growth and thermoelectric properties[J]. Journal of the Korean Physical Society, 72, 841-857(2018).

    [59] Peng K L, Lu X, Zhan H et al. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals[J]. Energy & Environmental Science, 9, 454-460(2016).

    [60] Sato H, Onodera K[J]. Ohba H. Characterization of Cd1-xMnxTe crystals grown by the Bridgman method, the zone melt method. Journal of Crystal Growth, 214/215, 885-888(2000).

    [61] Diouf S, Molinari A. Densification mechanisms in spark plasma sintering: effect of particle size and pressure[J]. Powder Technology, 221, 220-227(2012).

    [62] Zhang Z H, Liu Z F, Lu J F et al. The sintering mechanism in spark plasma sintering:proof of the occurrence of spark discharge[J]. Scripta Materialia, 81, 56-59(2014).

    [64] Sonber J K. Murthy T S R C, Subramanian C, et al. Processing methods for ultra high temperature ceramics[M]. ∥MAX Phases and Ultra-High Temperature Ceramics for Extreme Environments, Hershey: Engineering Science Reference, 180-202(2013).

    [65] Langer J, Hoffmann M J, Guillon O. Direct comparison between hot pressing and electric field-assisted sintering of submicron alumina[J]. Acta Materialia, 57, 5454-5465(2009).

    [66] Chen W H, Chen I C, Cheng H C et al. Influence of structural defect on thermal-mechanical properties of phosphorene sheets[J]. Journal of Materials Science, 52, 3225-3232(2017).

    [67] Tang G D, Wen Q, Yang T et al. Rock-salt-type nanoprecipitates lead to high thermoelectric performance in undoped polycrystalline SnSe[J]. RSC Advances, 7, 8258-8263(2017).

    [68] Baghbanzadeh M, Carbone L, Cozzoli P D et al. Microwave-assisted synthesis of colloidal inorganic nanocrystals[J]. Angewandte Chemie International Edition, 50, 11312-11359(2011).

    [69] Li B, Xie Y, Huang J et al. Solvothermal route to tin monoselenide bulk single crystal with different morphologies[J]. Inorganic Chemistry, 39, 2061-2064(2000).

    [70] Li Y W, Li F, Dong J F et al. Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders[J]. Journal of Materials Chemistry C, 4, 2047-2055(2016).

    [71] Franzman M A, Schlenker C W, Thompson M E et al. Solution-phase synthesis of SnSe nanocrystals for use in solar cells[J]. Journal of the American Chemical Society, 132, 4060-4061(2010).

    [73] Drozd V E, Nikiforova I O, Bogevolnov V B et al. ALD synthesis of SnSe layers and nanostructures[J]. Journal of Physics D: Applied Physics, 42, 125306(2009).

    [78] He Y, Lu P, Shi X et al. Ultrahigh thermoelectric performance in mosaic crystals[J]. Advanced Materials, 27, 3639-3644(2015).

    [79] Cai B W, Li J H, Sun H et al. Sodium doped polycrystalline SnSe: high pressure synthesis and thermoelectric properties[J]. Journal of Alloys and Compounds, 727, 1014-1019(2017).

    [80] Ge Z H, Song D S, Chong X Y et al. Boosting the thermoelectric performance of (Na,K)-codoped polycrystalline SnSe by synergistic tailoring of the band structure and atomic-scale defect phonon scattering[J]. Journal of the American Chemical Society, 139, 9714-9720(2017).

    [81] Wei T R, Tan G, Zhang X et al. Distinct impact of alkali-ion doping on electrical transport properties of thermoelectric p-type polycrystalline SnSe[J]. Journal of the American Chemical Society, 138, 8875-8882(2016).

    [82] Chien C H, Chang C C, Chen C L et al. Facile chemical synthesis and enhanced thermoelectric properties of Ag doped SnSe nanocrystals[J]. RSC Advances, 7, 34300-34306(2017).

    [83] Wang S, Su X L, Bailey T P et al. Optimizing the average power factor of p-type (Na, Ag) co-doped polycrystalline SnSe[J]. RSC Advances, 9, 7115-7122(2019).

    [84] Singh N K, Bathula S, Gahtori B et al. The effect of doping on thermoelectric performance of p-type SnSe: promising thermoelectric material[J]. Journal of Alloys and Compounds, 668, 152-158(2016).

    [85] Jin M, Shao H Z, Hu H Y et al. Single crystal growth of S n0.97A g0.03Se by a novel horizontal Bridgman method and its thermoelectric properties[J]. Journal of Crystal Growth, 460, 112-116(2017).

    [86] Li J C, Li D, Qin X Y et al. Enhanced thermoelectric performance of p-type SnSe doped with Zn[J]. Scripta Materialia, 126, 6-10(2017).

    [87] Chere E K, Zhang Q, Dahal K et al. Studies on thermoelectric figure of merit of Na-doped p-type polycrystalline SnSe[J]. Journal of Materials Chemistry A, 4, 1848-1854(2016).

    [88] Chang C, Tan Q, Pei Y L et al. Raising thermoelectric performance of n-type SnSe via Br doping and Pb alloying[J]. RSC Advances, 6, 98216-98220(2016).

    [89] Kucek V, Plechacek T, Janicek P et al. Thermoelectric properties of Tl-doped SnSe: a hint of phononic structure[J]. Journal of Electronic Materials, 45, 2943-2949(2016).

    [90] Wang X, Xu J T, Liu G Q et al. Optimization of thermoelectric properties in n-type SnSe doped with BiCl3[J]. Applied Physics Letters, 108, 083902(2016).

    [91] Han G, Popuri S R, Greer H F et al. Chlorine-enabled electron doping in solution-synthesized SnSe thermoelectric nanomaterials[J]. Advanced Energy Materials, 7, 1602328(2017).

    [92] Li S, Wang Y M, Chen C et al. Heavy doping by bromine to improve the thermoelectric properties of n-type polycrystalline SnSe[J]. Advanced Science, 5, 1800598(2018).

    [94] Ding G, Gao G, Yao K. High-efficient thermoelectric materials: the case of orthorhombic IV-VI compounds[J]. Scientific Reports, 5, 9567(2015).

    [95] Quan D T. Electrical properties and optical absorption of SnSe evaporated thin films[J]. Physica Status Solidi A, 86, 421-426(1984).

    [96] John K J, Pradeep B, Mathai E. Tin selenide (SnSe) thin films prepared by reactive evaporation[J]. Journal of Materials Science, 29, 1581-1583(1994).

    [97] Teghil R, Giardini-Guidoni A, Mele A et al. Laser induced ablation and epitaxial growth of SnSe[J]. Thin Solid Films, 241, 126-128(1994).

    [98] Bhatt V P, Gireesan K, Desai C F. Electrooptic properties of polycrystalline SnSe thin films[J]. Crystal Research and Technology, 24, 187-192(1989).

    [99] Pathinettam P D, Marikani A, Murali K R. Electrical and photoelectrical properties of vacuum deposited SnSe thin films[J]. Crystal Research and Technology, 35, 949-957(2000).

    [100] Abd El-Rahman K F, Darwish A A A, El-Shazly E A A. Electrical and photovoltaic properties of SnSe/Si heterojunction[J]. Materials Science in Semiconductor Processing, 25, 123-129(2014).

    [101] Reddy M V R, Gedi S, Pejjai B et al. Perspectives on SnSe-based thin film solar cells: a comprehensive review[J]. Journal of Materials Science: Materials in Electronics, 27, 5491-5508(2016).

    [102] Xue M Z, Yao J, Cheng S C et al. Lithium electrochemistry of a novel SnSe thin-film anode[J]. Journal of the Electrochemical Society, 153, A270-A274(2006).

    [103] Wang X F, Liu B, Xiang Q Y et al. Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices[J]. ChemSusChem, 7, 308-313(2014).

    [104] Zhang L, Lu L, Zhang D C et al. Dual-buffered SnSe@CNFs as negative electrode with outstanding lithium storage performance[J]. Electrochimica Acta, 209, 423-429(2016).

    [105] Park G D, Lee J H, Kang Y C. Superior Na-ion storage properties of high aspect ratio SnSe nanoplates prepared by a spray pyrolysis process[J]. Nanoscale, 8, 11889-11896(2016).

    [106] Rongione N A, Li M, Wu H et al. High-performance solution-processable flexible SnSe nanosheet films for lower grade waste heat recovery[J]. Advanced Electronic Materials, 5, 1800774(2019).

    [107] Tsotsas E, Martin H. Thermal conductivity of packed beds: a review[J]. Chemical Engineering and Processing: Process Intensification, 22, 19-37(1987).

    [108] Heo S H, Jo S, Kim H S et al. Composition change-driven texturing and doping in solution-processed SnSe thermoelectric thin films[J]. Nature Communications, 10, 864(2019).

    [109] Zhang F, Zang Y, Huang D et al. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials[J]. Nature Communications, 6, 8356(2015).

    [110] Xu H W, Zhou J, Wang H et al. Giant photonic response of Mexican-hat topological semiconductors for mid-infrared to terahertz applications[J]. The Journal of Physical Chemistry Letters, 11, 6119-6126(2020).

    [111] Zhou J, Zhang S H, Li J. Normal-to-topological insulator martensitic phase transition in group-IV monochalcogenides driven by light[J]. NPG Asia Materials, 12, 2(2020).

    [112] Ren G K, Lan J L, Zhao L D et al. Layered oxygen-containing thermoelectric materials: mechanisms, strategies, and beyond[J]. Materials Today, 29, 68-85(2019).

    [113] Ju H, Kim J. Fabrication of conductive polymer/inorganic nanoparticles composite films: PEDOT with exfoliated tin selenide nanosheets for polymer-based thermoelectric devices[J]. Chemical Engineering Journal, 297, 66-73(2016).

    Tools

    Get Citation

    Copy Citation Text

    Yutong Ran, Wenduo Chen, Hongwei Zhu. Preparation Methods, Thermoelectric Properties, and Potential Applications of SnSe[J]. Chinese Journal of Lasers, 2021, 48(2): 0202015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Aug. 11, 2020

    Accepted: Nov. 19, 2020

    Published Online: Jan. 6, 2021

    The Author Email: Zhu Hongwei (hongweizhu@tsinghua.edu.cn)

    DOI:10.3788/CJL202148.0202015

    Topics