Chinese Journal of Lasers, Volume. 48, Issue 20, 2000001(2021)
High Average Power Fiber Lasers: Research Progress and Future Prospect
[1] Shcherbakov E A, Fomin V V, Abramov A A et al. Industrial grade 100 kW power CW fiber laser[C]. //Advanced Solid State Lasers 2013, October 27-November 1, 2013, Paris, France, ATh4A.2(2013).
[2] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).
[3] Sprangle P, Ting A, Penano J et al. Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications[J]. IEEE Journal of Quantum Electronics, 45, 138-148(2009).
[5] Snitzer E, Po H, Hakimi F et al. Double clad, offset core Nd fiber laser[C]. //Optical Fiber Sensors 1988, January 27, 1988. New Orleans, Louisiana, United States, PD5(1988).
[6] Jeong Y, Sahu J K, Payne D N et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 12, 6088-6092(2004).
[7] Bonati G, Voelckel H, Gabler T et al. 1.53 kW from a single Yb-doped photonic crystal fiber laser[R](2005).
[8] Gapontsev V P. High power, kilo-Watt class fiber lasers are winning and securing new opportunities in automotive and heavy industry[C]. //Technical Summary Digest, January 24-29, 2004, Photonics West, San Jose, USA. [S.l.: s.n.], 5332-5335(2004).
[10] Fomin V et al. 10 kW single mode fiber laser[C]. //Proceeding of 14th International Conference on Laser Optics (LO 2010)(2010).
[11] Shiner B. The impact of fiber laser technology on the world wide material processing market[C]. //CLEO: Science and Innovations 2013, June 9-14, 2013, San Jose, California, United States, AF2J.1(2013).
[12] Guo Y, Peng Q, Bo Y et al. 24.6 kW near diffraction limit quasi-continuous-wave Nd∶YAG slab laser based on a stable-unstable hybrid cavity[J]. Optics Letters, 45, 1136-1139(2020).
[13] Wang D, Du Y L, Wu Y C et al. 20 kW class high-beam-quality CW laser amplifier chain based on a Yb: YAG slab at room temperature[J]. Optics Letters, 43, 3838-3841(2018).
[14] Nagel S, Metzger B, Bauer D et al. Thin-disk laser system operating above 10 kW at near fundamental mode beam quality[J]. Optics Letters, 46, 965-968(2021).
[15] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives(Invited)[J]. Journal of the Optical Society of America B, 27, B63-B92(2010).
[16] Gapontsev V, Gapontsev D, Platonov N et al. 2 kW CW ytterbium fiber laser with record diffraction-limited brightness[C]. //CLEO/Europe. 2005 Conference on Lasers and Electro-Optics Europe, 2005, June 12-17, 2005, Munich, Germany., 508(2005).
[17] Jiang M, Ma P F, Huang L et al. kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme[J]. High Power Laser Science and Engineering, 5, e30(2017).
[18] Ehrenreich T, Leveille R, Majid I et al. 1 kW all-glass Tm: fiber laser[J]. Proceedings of SPIE, 7580, 758016(2010).
[19] Anderson B M, Soloman J, Flores A. 1.1 kW, beam combinable thulium doped all-fiber amplifier[J]. Proceedings of SPIE, 11665, 116650B(2021).
[20] Gapontsev V P. New milestones in development of super high power fiber lasers[C]. //Photonics West 2006, OE/LASE, January 21-26, 2006, San Jose, California, United States. [S.l.: s.n.](2006).
[21] Snitzer E, Po H, Hakimi F et al. Erbium fiber laser amplifier at 1.55 μm with pump at 1.49 μm amd Yb sensitized Er oscillator[C]. //Optical Fiber Communication, January 25, 1988, New Orleans, Louisiana, PD2(1988).
[22] Minelly J D, Laming R I, Townsend J E et al. High-gain fiber power amplifier tandem-pumped by a 3-W multistripe diode[C]. //Optical Fiber Communication Conference 1992, February 2, 1992, San Jose, California, United States, TuG2(1992).
[24] Kobyakov A, Sauer M, Chowdhury D. Stimulated Brillouin scattering in optical fibers[J]. Advances in Optics and Photonics, 2, 1-59(2009).
[25] Liu W, Ma P F, Lü H et al. General analysis of SRS-limited high-power fiber lasers and design strategy[J]. Optics Express, 24, 26715-26721(2016).
[26] Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 12, 429-484(2020).
[27] Tao R M, Wang X L, Zhou P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-19(2018).
[29] Mattsson K E. Photo darkening of rare earth doped silica[J]. Optics Express, 19, 19797-19812(2011).
[30] Zhang H W, Zhou P, Wang X L et al. Simulation of fiber optical discharge effect of double cladding fiber[J]. Acta Optica Sinica, 33, 0706015(2013).
[31] Xiao Q R, Tian J D, Huang Y S et al. Internal features of fiber fuse in a Yb-doped double-clad fiber at 3 kW[J]. Chinese Physics Letters, 35, 054201(2018).
[32] Sun J Y, Xiao Q R, Li D et al. Fiber fuse behavior in kW-level continuous-wave double-clad field laser[J]. Chinese Physics B, 25, 014204(2016).
[33] Injeyan H, Goodno G D. High power laser handbook[M](2011).
[35] Kurkov A S. Oscillation spectral range of Yb-doped fiber lasers[J]. Laser Physics Letters, 4, 93-102(2007).
[37] Yu H, Zhang H, Lü H et al. 3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser[J]. Applied Optics, 54, 4556-4560(2015).
[38] Beier F, Hupel C, Kuhn S et al. Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier[J]. Optics Express, 25, 14892-14899(2017).
[39] Fang Q, Li J H, Shi W et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J]. IEEE Photonics Journal, 9, 1-7(2017).
[40] Wang Y Y, Gao C, Tang X et al. 30/900 Yb-doped aluminophosphosilicate fiber presenting 6.85-kW laser output pumped with commercial 976-nm laser diodes[J]. Journal of Lightwave Technology, 36, 3396-3402(2018).
[41] Zhan H, Wang Y Y, Peng K et al. 8.74 kW pump-gain integrated functional laser fiber[C]. //Optical Fiber Communication Conference 2018, March 11-15, 2018, San Diego, California, United States, W2A.2(2018).
[42] Lin A X, Zhan H, Peng K et al. 10 kW-level pump-gain integrated functional laser fiber[C]. //2018 Asia Communications and Photonics Conference (ACP), October 26-29, 2018, Hangzhou, China., 1-3(2018).
[43] Lin H H, Xu L X, Li C Y et al. 10.6 kW high-brightness cascade-end-pumped monolithic fiber lasers directly pumped by laser diodes in step-index large mode area double cladding fiber[J]. Results in Physics, 14, 102479(2019).
[44] Chen X L, He Y, Xu Z W et al. Theoretical and experimental investigation of a 10-kW high-efficiency 1070-nm fiber amplifier[J]. Chinese Journal of Lasers, 47, 1006001(2020).
[45] Xiao H, Leng J Y, Zhou P et al. High power tandem-pumped Yb-doped fiber laser[J]. Chinese Journal of Lasers, 44, 0201007(2017).
[46] Naderi S, Dajani I, Grosek J et al. Theoretical analysis of effect of pump and signal wavelengths on modal instabilities in Yb-doped fiber amplifiers[J]. Proceedings of SPIE, 8964, 89641W(2014).
[47] Yu H L, Wang X L, Zhou P et al. Beam quality and photodarkening comparison of tandem-pumped and directly diode-pumped ytterbium-doped fiber amplifiers[J]. Chinese Optics Letters, 12, s20604(2014).
[48] Codemard C A, Sahu J K, Nilsson J. Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 46, 1860-1869(2010).
[49] Zhou P, Xiao H, Leng J Y et al. High-power fiber lasers based on tandem pumping[J]. Journal of the Optical Society of America B, 34, A29-A36(2017).
[50] Wirth C, Schmidt O, Kliner A et al. High-power tandem pumped fiber amplifier with an output power of 2.9 kW[J]. Optics Letters, 36, 3061-3063(2011).
[51] Xiao H, Leng J Y, Zhang H W et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump[J]. Applied Optics, 54, 8166-8169(2015).
[52] Ma P F, Xiao H, Meng D R et al. High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression[J]. High Power Laser Science and Engineering, 6, 53-59(2018).
[53] Zhou P, Xiao H, Leng J Y et al. Recent development on high-power tandem-pumped fiber laser[J]. Proceedings of SPIE, 10016, 100160M(2016).
[54] Wang Z H, Xiao Q R, Wang X J et al. 3000 W tandem pumped all-fiber laser based on domestic fiber[J]. Acta Physica Sinica, 67, 024205(2018).
[55] Park J S, Kim T H, Oh Y J et al. Investigation of photodarkening in tandem-pumped Yb-doped fibers[J]. Optics Express, 28, 27316-27323(2020).
[56] Lim K J, Seah SamuelK W, Ye J Y et al. High absorption large-mode area step-index fiber for tandem-pumped high-brightness high-power lasers[J]. Photonics Research, 8, 1599-1604(2020).
[59] Seah C P, Lim W Y W, Chua S L. A 4 kW fiber amplifier with good beam quality employing confined-doped gain fiber[C]. //Advanced Solid State Lasers 2018, November 4-8, 2018, Boston, Massachusetts, United States, AM2A.2(2018).
[60] Tian J D, Xiao Q R, Li D et al. Tandem-pumped high-power narrow-linewidth fiber laser tunable from 1060-1090 nm[J]. Journal of Lightwave Technology, 38, 1461-1467(2020).
[61] Liu F, Liu P, Feng X et al. Tandem-pumped, tunable thulium-doped fiber laser in 2.1 μm wavelength region[J]. Optics Express, 27, 8283-8290(2019).
[62] Fan D Y. The review of high power laser development in China[C]. //The 12th Laser Technology and Optoelectronics Conference, March 12-15, 2017, Shanghai, China.(2017).
[63] Liu Z J, Jin X X, Su R T et al. Development status of high power fiber lasers and their coherent beam combination[J]. Science China Information Sciences, 62, 1-32(2019).
[64] Ma P F, Xiao H, Meng D R et al. 4 kW all-fiber amplifier with narrow linewidth based on tandem-pumped[J]. Chinese Journal of Lasers, 45, 0715002(2018).
[65] Gao C, Dai J Y, Li F Y et al. Homemade 10-kW ytterbium-doped aluminophosphosilicate fiber for tandem pumping[J]. Chinese Journal of Lasers, 47, 0315001(2020).
[66] Wang X J, Yan P, Wang Z H et al. The 5.4 kW output power of the ytterbium-doped tandempumping[C]. //Conference on Lasers and Electro-Optics, May 13-18, 2018, San Jose, California, AM2M.5(2018).
[67] Wang Y, Yang J L, Huang C Y et al. High power tandem-pumped thulium-doped fiber laser[J]. Optics Express, 23, 2991-2998(2015).
[68] Dong H H, Wang S K, Wang Z Y et al. Spectral performance of Yb 3+-doped silica fiber for 1018 nm tandem-pumping technology[J]. Chinese Journal of Lasers, 48, 1103001(2021).
[71] Jin X, Lee E, Luo J et al. High-efficiency ultrafast Tm-doped fiber amplifier based on resonant pumping[J]. Optics Letters, 43, 1431-1434(2018).
[72] Hemming A, Simakov N, Davidson A et al. A monolithic cladding pumped holmium-doped fibre laser[C]. //CLEO: Science and Innovations 2013, June 9-14, 2013, San Jose, California, United States, CW1M.1(2013).
[74] Stihler C, Jauregui C, Tünnermann A et al. Pump-power-noise influence on mode instabilities in high-power fiber laser systems[C]. //2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 23-27, 2019, Munich, Germany.(2019).
[75] Stihler C, Jauregui C, Otto H J et al. Controlling mode instabilities at 628 W average output power in an Yb-doped rod-type fiber amplifier by active modulation of the pump power[J]. Proceedings of SPIE, 10083, 100830P(2017).
[76] Miao Y, Ma P F, Liu W et al. First demonstration of Co-pumped single- frequency Raman fiber amplifier with spectral-broadening-free property enabled by ultra-low noise pumping[J]. IEEE Access, 6, 71988-71993(2018).
[77] Liu W, Ma P F, Miao Y et al. Intrinsic mechanism for spectral evolution in single-frequency Raman fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-8(2018).
[78] Wang Z H, Xiao Q R, Huang Y S et al. Dual-wavelength bidirectional pumped high-power Raman fiber laser[J]. High Power Laser Science and Engineering, 7, e5(2019).
[79] Hong S, Feng Y T, Nilsson J. Multi-wavelength diode-pumping of fiber Raman laser[C]. //Conference on Lasers and Electro-Optics, May 13-18, 2018, San Jose, California, SM1K, 6(2018).
[80] Ye J, Zhang Y, Xu J M et al. Broadband pumping enabled flat-amplitude multi-wavelength random Raman fiber laser[J]. Optics Letters, 45, 1786-1789(2020).
[81] Dominic V, MacCormack S, Waarts R et al. 110 W fiber laser[C]. //Conference on Lasers and Electro-Optics 1999, May 23-26, 1999, Baltimore, Maryland, United States, CPD11(1999).
[82] Limpert J, Liem A, Zellmer H et al. 500 W continuous-wave fibre laser with excellent beam quality[J]. Electronics Letters, 39, 645-647(2003).
[83] Liu C H, Galvanauskas A, Ehlers B et al. 810-W single transverse mode Yb-doped fiber laser[C]. //Advanced Solid-State Photonics, February 1-4, 2004, Santa Fe, New Mexico, PDP17(2004).
[84] Gapontsev V P, Platonov N S, Shkurihin O et al. 400 W low-noise single-mode CW ytterbium fiber laser with an integrated fiber delivery[C]. //Conference on Lasers and Electro-Optics 2003, June 1-6, 2003, Baltimore, Maryland, United States, CThPDB9(2003).
[85] Jeong Y, Sahu J K, Baek S et al. Cladding-pumped ytterbium-doped large-core fiber laser with 610 W of output power[J]. Optics Communications, 234, 315-319(2004).
[86] Fang Q, Shi W, Qin Y G et al. 2.5 kW monolithic continuous wave (CW) near diffraction-limited fiber laser at 1080 nm[J]. Laser Physics Letters, 11, 105102(2014).
[87] Yu H, Zhang H, Lü H et al. 3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser[J]. Applied Optics, 54, 4556-4560(2015).
[88] Xiao H, Leng J, Zhang H et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump[J]. Applied Optics, 54, 8166-8169(2015).
[89] Yan P, Huang Y S, Sun J Y et al. 3.1 kW monolithic MOPA configuration fibre laser bidirectionally pumped by non-wavelength-stabilized laser diodes[J]. Laser Physics Letters, 14, 080001(2017).
[90] Zheng J K, Zhao W, Zhao B Y et al. 4.62 kW excellent beam quality laser output with a low-loss Yb/Ce co-doped fiber fabricated by chelate gas phase deposition technique[J]. Optical Materials Express, 7, 1259-1266(2017).
[91] Dai S J, He B, Zhou J et al. 1.5 kW near single-mode all-fiber laser[J]. Chinese Journal of Lasers, 40, 0702001(2013).
[92] Kalyoncu S K, Mete B, Yenıay A. Diode-pumped triple-clad fiber MOPA with an output power scaling up to 4.67 kW[J]. Optics Letters, 45, 1870-1873(2020).
[93] Mashiko Y, Nguyen H K, Kashiwagi M et al. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression[J]. Proceedings of SPIE, 9728, 972805(2016).
[94] Ikoma S, Nguyen H K, Kashiwagi M et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing[J]. Proceedings of SPIE, 10083, 100830Y(2017).
[95] Shima K, Ikoma S, Uchiyama K et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing[J]. Proceedings of SPIE, 10512, 105120C(2018).
[96] Takubo Y, Ikoma S, Uchiyama K et al. Dynamic analysis of materials processing with 5-kW single-mode fiber laser[J]. Proceedings of SPIE, 10897, 1089712(2019).
[97] Wang Y, Kitahara R, Kiyoyama W et al. 8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad[J]. Proceedings of SPIE, 11260, 1126022(2020).
[98] Krämer R G, Möller F, Matzdorf C et al. Extremely robust femtosecond written fiber Bragg gratings for an ytterbium-doped fiber oscillator with 5 kW output power[J]. Optics Letters, 45, 1447-1450(2020).
[99] Roohforouz A, Chenar R E, Azizi S et al. Effect of pumping configuration on the transverse mode instability power threshold in a 3.02 kW fiber laser oscillator[C]. //Laser Applications Conference 2019, September 29-October 3, 2019, Vienna, Austria, JM5A.29(2019).
[100] Yang B L, Zhang H W, Ye Q et al. 4.05 kW monolithic fiber laser oscillator based on home-made large mode area fiber Bragg gratings[J]. Chinese Optics Letters, 16, 031407(2018).
[101] Yang B L, Wang X L, Ye Y et al. Output power of all fiber laser oscillator exceeds 6 kW[J]. Chinese Journal of Lasers, 47, 0116001(2020).
[102] Xi X M, Wang P, Yang B L et al. The output power of all fiber laser oscillator exceeds 7 kW[J]. Chinese Journal of Lasers, 48, 0116001(2021).
[105] Turitsyn S K, Babin S A, El-Taher A E et al. Random distributed feedback fibre laser[J]. Nature Photonics, 4, 231-235(2010).
[106] Turitsyn S K, Babin S A, Churkin D V et al. Random distributed feedback fibre lasers[J]. Physics Reports, 542, 133-193(2014).
[107] Churkin D V, Sugavanam S, Vatnik I D et al. Recent advances in fundamentals and applications of random fiber lasers[J]. Advances in Optics and Photonics, 7, 516-569(2015).
[108] Wang Z N, Wu H, Fan M Q et al. High power random fiber laser with short cavity length: theoretical and experimental investigations[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 10-15(2015).
[109] Du X Y, Zhang H W, Xiao H et al. High-power random distributed feedback fiber laser: from science to application[J]. Annalen Der Physik, 528, 649-662(2016).
[110] Zhou P, Ye J, Xu J M et al. The rising power of random distributed feedback fiber laser[J]. Proceedings of SPIE, 10619, 106190A(2018).
[111] Du X Y, Zhang H W, Ma P F et al. Kilowatt-level fiber amplifier with spectral-broadening-free property, seeded by a random fiber laser[J]. Optics Letters, 40, 5311-5314(2015).
[113] Zhang H, Zhou P, Xiao H et al. Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power[J]. Laser Physics Letters, 11, 075104(2014).
[114] Du X Y, Zhang H W, Wang X L et al. Short cavity-length random fiber laser with record power and ultrahigh efficiency[J]. Optics Letters, 41, 571-574(2016).
[115] Zhang H W, Huang L, Zhou P et al. More than 400 W random fiber laser with excellent beam quality[J]. Optics Letters, 42, 3347-3350(2017).
[116] Xu J M, Lou Z K, Ye J et al. Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects[J]. Optics Express, 25, 5609-5617(2017).
[117] Zhang H W, Huang L, Song J X et al. Quasi-kilowatt random fiber laser[J]. Optics Letters, 44, 2613-2616(2019).
[118] Wang Z H, Yan P, Huang Y S et al. An efficient 4-kW level random fiber laser based on a tandem-pumping scheme[J]. IEEE Photonics Technology Letters, 31, 817-820(2019).
[119] Xu J M, Ye J, Zhou P et al. Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality[J]. Science China Technological Sciences, 62, 80-86(2019).
[120] Xu J M, Huang L, Jiang M et al. Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output[J]. Photonics Research, 5, 350-354(2017).
[121] Wang Z H, Yu W L, Tian J D et al. 5.1 kW tandem-pumped fiber amplifier seeded by random fiber laser with high suppression of stimulated Raman scattering[J]. IEEE Journal of Quantum Electronics, 57, 1-9(2021).
[122] Dontsova E I, Kablukov S I, Vatnik I D et al. Frequency doubling of Raman fiber lasers with random distributed feedback[J]. Optics Letters, 41, 1439-1442(2016).
[123] Wu H S, Wang P, Song J X et al. High power tunable mid-infrared optical parametric oscillator enabled by random fiber laser[J]. Optics Express, 26, 6446-6455(2018).
[124] Zhang H W, Zhou P, Wang X et al. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation[J]. Optics Express, 23, 17138-17144(2015).
[125] Han B, Rao Y J, Wu H et al. Low-noise high-order Raman fiber laser pumped by random lasing[J]. Optics Letters, 45, 5804-5807(2020).
[126] Pask H M, Carman R J, Hanna D C et al. Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1, 2-13(1995).
[127] Zhou P, Li R X, Xiao H et al. Exploring high power, extreme wavelength operating potential of rare-earth-doped silica fiber[J]. Proceedings of SPIE, 10339, 103391C(2017).
[128] Palma-Vega G, Walbaum T, Heinzig M et al. Ring-up-doped fiber for the generation of more than 600 W single-mode narrow-band output at 1018 nm[J]. Optics Letters, 44, 2502-2505(2019).
[129] Glick Y, Sintov Y, Zuitlin R et al. Single-mode 230 W output power 1018 nm fiber laser and ASE competition suppression[J]. Journal of the Optical Society of America B, 33, 1392-1398(2016).
[130] Lafouti M, Latifi H, Fathi H et al. Experimental investigation of a high-power 1018 nm fiber laser using a 20/400 μm ytterbium-doped fiber[J]. Applied Optics, 58, 729-733(2019).
[131] Kalyoncu S K, Yeniay A. High brightness 1018 nm monolithic fiber laser with power scaling to >500 W[J]. Applied Optics, 59, 4763-4767(2020).
[132] Midilli Y, Efunbajo O B, Şimşek B et al. 1018 nm Yb-doped high-power fiber laser pumped by broadband pump sources around 915 nm with output power above 100 W[J]. Applied Optics, 56, 7225-7229(2017).
[133] Chen X L, Wang J H, Zhao X et al. 307 W high-power 1018 nm monolithic tandem pump fiber source with effective thermal management[J]. Chinese Optics Letters, 15, 071407(2017).
[134] Yan P, Wang X J, Li D et al. High-power 1018 nm ytterbium-doped fiber laser with output of 805 W[J]. Optics Letters, 42, 1193-1196(2017).
[135] Yan P, Wang X J, Wang Z H et al. A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-6(2018).
[136] Tian J D, Xiao Q R, Li D et al. Hybrid-structure 1018-nm monolithic single-mode fiber laser producing high power and high efficiency[J]. OSA Continuum, 2, 1138-1147(2019).
[137] Xie Z X, Fang Q, Xu Y et al. Hundred-Watts-level monolithic narrow linewidth linearly-polarized fiber laser at 1018 nm[J]. Optical Engineering, 58, 106106(2019).
[138] Xiao H, Zhou P, Wang X L et al. High power 1018 nm ytterbium doped fiber laser with an output power of 309 W[J]. Laser Physics Letters, 10, 065102(2013).
[139] Li R X, Xiao H, Leng J Y et al. 2240 W high-brightness 1018 nm fiber laser for tandem pump application[J]. Laser Physics Letters, 14, 125102(2017).
[140] Xiao H, Leng J, Zhang H et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump[J]. Applied Optics, 54, 8166-8169(2015).
[141] Platonov N, Shkurikhin O, Fomin V et al. High-efficient kW-level single-mode ytterbium fiber lasers in all-fiber format with diffraction-limited beam at wavelengths in 1000-1030 nm spectral range[J]. Proceedings of SPIE, 11260, 1126003(2020).
[144] Röser F, Jauregui C, Limpert J et al. 94 W 980 nm high brightness Yb-doped fiber laser[J]. Optics Express, 16, 17310-17318(2008).
[145] Li P X, Zhong G S, Liu Z et al. 980 nm Yb-doped double-clad photonic crystal fiber amplifier and its frequency doubling[J]. Optics & Laser Technology, 44, 2202-2205(2012).
[146] Du H T, Liu A M, Cao J Q et al. The 976 nm band all-fiber laser developed by our company can achieve a power output of 100 W[J]. High Power Laser and Particle Beams, 31, 103211(2019).
[147] Valero N, Feral C, Lhermite J et al. 39 W narrow spectral linewidth monolithic ytterbium-doped fiber MOPA system operating at 976 nm[J]. Optics Letters, 45, 1495-1498(2020).
[148] Li W S, Matniyaz T, Gafsi S et al. 151 W monolithic diffraction-limited Yb-doped photonic bandgap fiber laser at ~978 nm[J]. Optics Express, 27, 24972-24977(2019).
[149] Matniyaz T, Li W S, Gafsi S et al. A monolithic single-mode Yb three-level fiber laser at ~978 nm with a record power of ~150 W[J]. //CLEO: Applications and Technology 2019, May 5-10, 2019, San Jose, California, United States, JTh5A.7(2019).
[150] Chen M N, Cao J Q, Huang Z H et al. Research progress on continuous-wave fiber lasers operating around 980 nm[J]. Chinese Journal of Lasers, 48, 0401013(2021).
[151] Wu H S, Xiao H, Zhang H W et al. Preliminary theoretical analysis of high-power Yb-doped fiber amplifiers tandem-pumped by short-wavelength fiber lasers[J]. Proceedings of SPIE, 11781, 1178120(2021).
[153] Huang L, Zhang H W, Wang X L et al. Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125 ℃[J]. IEEE Photonics Journal, 8, 1-7(2016).
[154] Xiao H, Zhang H W, Xu J M et al. 120 W monolithic Yb-doped fiber oscillator at 1150 nm[J]. Journal of the Optical Society of America B, 34, A63-A69(2017).
[156] Olausson C B, Shirakawa A, Chen M et al. 167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm[J]. Optics Express, 18, 16345-16352(2010).
[157] Jacquemet M, Mugnier A, le Corre G et al. CW PM multiwatts Yb-doped fiber laser directly emitting at long wavelength[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 120-128(2009).
[158] Yusim A, Barsalou J, Gapontsev D et al. 100 watt single-mode CW linearly polarized all-fiber format 1.56-μm laser with suppression of parasitic lasing effects[J]. Proceedings of SPIE, 5709, 69-77(2005).
[159] Jeong Y, Yoo S, Codemard C A et al. Erbium∶ytterbium codoped large-core fiber laser with 297-W continuous-wave output power[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 573-579(2007).
[161] Kotov L V, Likhachev M E, Bubnov M M et al. Yb-free Er-doped all-fiber amplifier cladding-pumped at 976 nm with output power in excess of 100 W[J]. Proceedings of SPIE, 8961, 89610X(2014).
[162] Supradeepa V R, Nicholson J W, Feder K. Continuous wave Erbium-doped fiber laser with output power of >100 W at 1550 nm in-band core-pumped by a 1480 nm Raman fiber laser[C]. //CLEO: Science and Innovations 2012, May 6-11, 2012, San Jose, California, United States, CM2N.8(2012).
[163] Lin H Q, Feng Y J, Feng Y T et al. 656 W Er-doped, Yb-free large-core fiber laser[J]. Optics Letters, 43, 3080-3083(2018).
[164] Matniyaz T, Kong F T, Kalichevsky-Dong M T et al. 302 W single-mode power from an Er/Yb fiber MOPA: publisher’s note[J]. Optics Letters, 45, 3021(2020).
[165] Yu W L, Yan P, Xiao Q R et al. Power scalability of a continuous-wave high-power Er-Yb co-doped fiber amplifier pumped by Yb-doped fiber lasers[J]. Applied Optics, 60, 2046-2055(2021).
[166] Yu W L, Xiao Q R, Wang L L et al. 2196 W large-mode-area Er∶Yb codoped fiber amplifier operating at 1600 nm pumped by 1018 nm fiber lasers[J]. Optics Letters, 46, 2192-2195(2021).
[167] Dan W, Han Q, Jia Q et al. Numerical comparison of pumping methods for high-power Er/Yb-codoped fiber lasers[J]. Applied Optics, 60, 2560-2566(2021).
[168] Moulton P F, Rines G A, Slobodtchikov E V et al. Tm-doped fiber lasers: fundamentals and power scaling[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 85-92(2009).
[169] Walbaum T, Heinzig M, Schreiber T et al. Monolithic thulium fiber laser with 567 W output power at 1970 nm[J]. Optics Letters, 41, 2632-2635(2016).
[170] Yin K, Zhu R Z, Zhang B et al. 300 W-level, wavelength-widely-tunable, all-fiber integrated thulium-doped fiber laser[J]. Optics Express, 24, 11085-11090(2016).
[171] Jin X X, Wang X, Zhou P et al. Powerful 2 μm silica fiber sources: a review of recent progress and prospects[J]. Journal of Electronic Science and Technology, 13, 315-327(2015).
[172] Gaida C, Gebhardt M, Heuermann T et al. Ultrafast thulium fiber laser system emitting more than 1 kW of average power[J]. Optics Letters, 43, 5853-5856(2018).
[173] Gaida C, Gebhardt M, Heuermann T et al. Ultrafast Tm-doped fiber amplifier with 1 kW average output power[C]. //The European Conference on Lasers and Electro-Optics 2019, June 23-27, 2019, Munich, Germany, cj_10_4(2019).
[174] Gaida C, Gebhardt M, Heuermann T et al. Observation of transverse-mode instabilities in a thulium-doped fiber amplifier[J]. Proceedings of SPIE, 10897, 1089702(2019).
[175] Tao R M, Zhou P, Xiao H et al. Theoretical study of high power mode instabilities in 2 μm thulium-doped fiber amplifiers[C]. //16th International Conference “Laser Optics 2014” ICLO, June 30-July 4, 2014, ST. Petersburg, Russia. [S.l.: s.n.](2014).
[176] Smith A V, Smith J J. Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm[J]. Optics Express, 24, 975-992(2016).
[177] Sincore A, Bradford J D, Cook J et al. High average power thulium-doped silica fiber lasers: review of systems and concepts[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-8(2018).
[178] Chen S, Jung Y, Alam S U et al. Ultra-short wavelength operation of a thulium doped fiber laser in the 1620-1660 nm wavelength band[C]. //2018 Optical Fiber Communications Conference and Exposition (OFC), March 11-15, 2018, San Diego, CA, USA., 1-3(2018).
[179] Li Z, Jung Y, Daniel J M O et al. Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers[J]. Optics Letters, 41, 2197-2200(2016).
[180] Daniel J M O, Simakov N, Tokurakawa M et al. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band[J]. Optics Express, 23, 18269-18276(2015).
[181] Feng Y. Raman fiber lasers[M](2017).
[182] Supradeepa V R, Feng Y, Nicholson J W. Raman fiber lasers[J]. Journal of Optics, 19, 023001(2017).
[183] Zhang H W, Zhou P, Xiao H et al. Toward high-power nonlinear fiber amplifier[J]. High Power Laser Science and Engineering, 6, e51(2018).
[184] Zhang H W, Xiao H, Zhou P et al. 119-W monolithic single-mode 1173-nm Raman fiber laser[J]. IEEE Photonics Journal, 5, 1501706(2013).
[185] Song J X, Wu H S, Ye J et al. High power linearly polarized Raman fiber laser with stable temporal output[J]. Photonic Sensors, 9, 43-48(2019).
[186] Kablukov S I, Dontsova E I, Zlobina E A et al. An LD-pumped Raman fiber laser operating below 1 μm[J]. Laser Physics Letters, 10, 085103(2013).
[187] Glick Y, Fromzel V, Zhang J et al. High-efficiency, 154 W CW, diode-pumped Raman fiber laser with brightness enhancement[J]. Applied Optics, 56, B97-B102(2017).
[188] Zlobina E A, Kablukov S I, Wolf A A et al. Generating high-quality beam in a multimode LD-pumped all-fiber Raman laser[J]. Optics Express, 25, 12581-12587(2017).
[189] Glick Y, Shamir Y, Wolf A A et al. Highly efficient all-fiber continuous-wave Raman graded-index fiber laser pumped by a fiber laser[J]. Optics Letters, 43, 1027-1030(2018).
[190] Shamir Y, Glick Y, Aviel M et al. 250 W clad pumped Raman all-fiber laser with brightness enhancement[J]. Optics Letters, 43, 711-714(2018).
[191] Glick Y, Shamir Y, Aviel M et al. 1.2 kW clad pumped Raman all-passive-fiber laser with brightness enhancement[J]. Optics Letters, 43, 4755-4758(2018).
[192] Chen Y, Xiao H, Xu J et al. Laser diode-pumped dual-cavity high-power fiber laser emitting at 1150 nm employing hybrid gain[J]. Applied Optics, 55, 3824-3828(2016).
[193] Wang J M, Li C, Yan D P. High power composite cavity fiber laser oscillator at 1120 nm[J]. Optics Communications, 405, 318-322(2017).
[194] Zhang H W, Xiao H, Zhou P et al. 322 W single-mode Yb-doped all-fiber laser operated at 1120 nm[J]. Applied Physics Express, 7, 052701(2014).
[196] Chen Y Z, Yao T F, Xiao H et al. 3 kW passive-gain-enabled metalized Raman fiber amplifier with brightness enhancement[J]. Journal of Lightwave Technology, 39, 1785-1790(2021).
[197] Chen Y Z, Yao T F, Xiao H et al. High-power cladding pumped Raman fiber amplifier with a record beam quality[J]. Optics Letters, 45, 2367-2370(2020).
[198] Chen Y Z, Yao T F, Xiao H et al. Greater than 2 kW all-passive fiber Raman amplifier with good beam quality[J]. High Power Laser Science and Engineering, 8, e33(2020).
[200] Ma P F, Zhang H W, Huang L et al. Kilowatt-level near-diffraction-limited and linear-polarized Ytterbium-Raman hybrid nonlinear amplifier based on polarization selection loss mechanism[J]. Optics Express, 23, 26499-26508(2015).
[201] Zhang H W, Tao R M, Zhou P et al. 1.5-kW Yb-Raman combined nonlinear fiber amplifier at 1120 nm[J]. IEEE Photonics Technology Letters, 27, 628-630(2015).
[202] Xiao Q, Yan P, Li D et al. Bidirectional pumped high power Raman fiber laser[J]. Optics Express, 24, 6758-6768(2016).
[203] Ma P F, Miao Y, Liu W et al. Kilowatt-level ytterbium-Raman fiber amplifier with a narrow-linewidth and near-diffraction-limited beam quality[J]. Optics Letters, 45, 1974-1977(2020).
[204] Liu W, Ma P F, Zhou P et al. Effects of four-wave-mixing in high-power Raman fiber amplifiers[J]. Optics Express, 28, 593-606(2020).
[205] Liu W, Miao Y, Ma P F et al. Theoretical study of narrow-linewidth hybrid rare-earth-Raman fiber amplifiers[J]. Optics Express, 27, 14523-14535(2019).
[206] Distler V, Möller F, Strecker M et al. Transverse mode instability in a passive fiber induced by stimulated Raman scattering[J]. Optics Express, 28, 22819-22828(2020).
[207] Naderi S, Dajani I, Grosek J et al. Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers[J]. Optics Express, 24, 16550-16565(2016).
[208] Wang Z H, Zhang B, Liu J et al. Recent developments in mid-infrared fiber lasers: status and challenges[J]. Optics & Laser Technology, 132, 106497(2020).
[211] Jain R, Zhu X S. Advances in materials and fibers for high power Mid-infrared fiber lasers[C]. //2008 2nd National Workshop on Advanced Optoelectronic Materials and Devices, December 22-24, 2008, Varanasi, India., 307-316(2008).
[212] Zhu X S, Jain R. 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser[J]. Optics Letters, 32, 26-28(2006).
[213] Tokita S, Hirokane M, Murakami M et al. Stable 10 W Er: ZBLAN fiber laser operating at 271-288 μm[J]. Optics Letters, 35, 3943-3945(2010).
[214] Faucher D, Bernier M, Androz G et al. 20 W passively cooled single-mode all-fiber laser at 28 μm[J]. Optics Letters, 36, 1104-1106(2011).
[215] Tokita S, Murakami M, Shimizu S et al. Liquid-cooled 24 W mid-infrared Er∶ZBLAN fiber laser[J]. Optics Letters, 34, 3062-3064(2009).
[216] Fortin V, Bernier M, Bah S T et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 40, 2882-2885(2015).
[217] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).
[218] Goya K, Uehara H, Konishi D et al. Stable 35-W Er∶ZBLAN fiber laser with CaF2 end caps[J]. Applied Physics Express, 12, 102007(2019).
[219] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).
[220] Aydın Y O, Fortin V, Maes F et al. Long-term operation of high-power 3 μm fiber lasers[C]. //Laser Congress 2019 (ASSL, LAC, LS&C), September 29-October 3, 2019, Vienna, AW4A.7(2019).
[221] Guo C Y, Dong F L, Shen P S et al. 20 W all-fiberized mid-infrared fiber laser at 2.8 μm[J]. Chinese Journal of Lasers, 48, 1416001(2021).
[222] Gapontsev V, Avdokhin A, Kadwani P et al. SM green fiber laser operating in CW and QCW regimes and producing over 550 W of average output power[J]. Proceedings of SPIE, 8964, 896407(2014).
[223] Wang H J, Zou J H, Dong C C et al. High-efficiency, yellow-light Dy 3+-doped fiber laser with wavelength tuning from 568.7 to 581.9 nm[J]. Optics Letters, 44, 4423-4426(2019).
[224] Kifle E, Starecki F, Loiko P et al. Watt-level visible laser in double-clad Pr 3+-doped fluoride fiber pumped by a GaN diode[J]. Optics Letters, 46, 74-77(2021).
[225] Fujimoto Y, Nakahara M, Binun P et al. 2 W single-mode visible laser oscillation in Pr-doped double-clad structured waterproof fluoro-aluminate glass fiber[C]. //The European Conference on Lasers and Electro-Optics 2019, June 23-27, 2019, Munich, Germany, cj_p_34(2019).
[226] Lord M P, Maes F, Fortin V et al. Watt-level visible laser emission in a double-clad praseodymium-doped fluoride fiber[C]. //Advanced Solid State Lasers 2020, October 13-16, 2020, Washington, D.C., United States, ATh5A.6(2020).
[227] Zou J H, Li T R, Dou Y B et al. Direct generation of watt-level yellow Dy 3+-doped fiber laser[J]. Photonics Research, 9, 446-451(2021).
[228] Fang Q, Xu Y, Fu S J et al. Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930 nm[J]. Optics Letters, 41, 1829-1832(2016).
[229] Wang Y F, Wu J M, Zhao Q L et al. Single-frequency DBR Nd-doped fiber laser at 1120 nm with a narrow linewidth and low threshold[J]. Optics Letters, 45, 2263-2266(2020).
[231] Zhu X S, Zong J, Miller A et al. Single-frequency Ho 3+-doped ZBLAN fiber laser at 1200 nm[J]. Optics Letters, 37, 4185-4187(2012).
[232] Yang C S, Cen X, Xu S H et al. Research progress of single-frequency fiber laser[J]. Acta Optica Sinica, 41, 0114002(2021).
[233] Brignon A. Coherent laser beam combining[M](2013).
[234] Beier F, Hupel C, Nold J et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier[J]. Optics Express, 24, 6011-6020(2016).
[235] Ma P F, Tao R M, Su R T et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 24, 4187-4195(2016).
[236] Wang Y S, Wang J, Chang Z et al. Output of 3.08 kW narrow linewidth linearly polarized all-fiber laser based on a simple MOPA structure[J]. High Power Laser and Particle Beams, 32, 27-29(2020).
[237] Shen H, Lou Q, Quan Z et al. Narrow-linewidth all-fiber amplifier with up to 3.01 kW output power based on commercial 20/400 μm active fiber and counterpumped configuration[J]. Applied Optics, 58, 3053-3058(2019).
[238] Wang P, Sahu J K, Clarkson W A. Power scaling of ytterbium-doped fiber superfluorescent sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 580-587(2007).
[239] Xu J M, Zhou P, Liu W et al. Exploration in performance scaling and new application avenues of superfluorescent fiber source[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-10(2018).
[240] Zhang B, Jin A J, Ma P F et al. High-power near-infrared linearly-polarized supercontinuum generation in a polarization-maintaining Yb-doped fiber amplifier[J]. Optics Express, 23, 28683-28690(2015).
[241] Hu X H, Zhang W, Yang Z et al. High average power, strictly all-fiber supercontinuum source with good beam quality[J]. Optics Letters, 36, 2659-2661(2011).
[242] Song R, Hou J, Chen S P et al. High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier[J]. Optics Letters, 37, 1529-1531(2012).
[243] Dawson J W, Messerly M J, Beach R J et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 16, 13240-13266(2008).
[244] Zhu J J, Zhou P, Ma Y X et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 19, 18645-18654(2011).
[245] Zervas M N. Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability[J]. Proceedings of SPIE, 10512, 1051205(2018).
[246] Otto H J, Jauregui C, Limpert J et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[J]. Proceedings of SPIE, 9728, 97280E(2016).
[248] Agrawal G P. Nonlinear fiber optics[M](2013).
[250] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).
[252] Zervas M N. Transverse mode instability analysis in fibre amplifiers[J]. Proceedings of SPIE, 10083, 100830M(2017).
[253] Zhou P. Fundamentals of high-average-power fiber laser technology: mode[J]. High Power Laser and Particle Beams, 30, 060201(2018).
[254] Lai W C, Ma P F, Liu W et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber[J]. Optics Express, 28, 20908-20919(2020).
[255] Huang Z M, Shu Q, Chu Q H et al. 5 kW all-fiberied narrow linewidth single mode fiber amplifier[J]. Chinese Journal of Lasers, 48, 0616001(2021).
[256] Ma P F, Xiao H, Liu W et al. All-fiberized and narrow-linewidth 5 kW power-level fiber amplifier based on bidirectional pumping configuration[J]. High Power Laser Science and Engineering, 1-20(2021).
[257] Xu J M, Ye J, Xiao H et al. In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality[J]. High Power Laser Science and Engineering, 6, e46(2018).
[258] Song R, Hou J, Chen S P et al. Recent developments in high power near-infrared supercontinuum generation based on photonic crystal fiber[J]. Chinese Physics B, 21, 094211(2012).
[259] Li Y, Dong K, Li F et al. 300 W high power supercontinuum generation of complete visible spectrum by long tapered photonic crystal fiber[J]. High Power Laser and Particle Beams, 33, 021002(2021).
[260] Beier F, Strecker M, Nold J et al. 6.8 kW peak power quasi-continuous wave tandem-pumped ytterbium amplifier at 1071 nm[J]. Proceedings of SPIE, 9344, 93441H(2015).
[261] Avdokhin A, Gapontsev V, Kadwani P et al. High average power quasi-CW single-mode green and UV fiber lasers[J]. Proceedings of SPIE, 9347, 934704(2015).
[265] Eidam T, Hanf S, Seise E et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 35, 94-96(2010).
[266] Zhao Z, Sheehy B, Minty M. Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier[J]. Optics Express, 25, 8138-8143(2017).
[267] Tünnermann A, Schreiber T, Limpert J. Fiber lasers and amplifiers: an ultrafast performance evolution[J]. Applied Optics, 49, F71-F78(2010).
[268] Liu Y, Li W X, Luo D P et al. Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Optics Express, 24, 10939-10945(2016).
[270] Chen S P, Chen H W, Hou J et al. 100 W all fiber picosecond MOPA laser[J]. Optics Express, 17, 24008-24012(2009).
[271] Elahi P, Yılmaz S, Akçaalan Ö et al. Doping management for high-power fiber lasers: 100 W, few-picosecond pulse generation from an all-fiber-integrated amplifier[J]. Optics Letters, 37, 3042-3044(2012).
[274] Ma P F, Tao R M, Huang L et al. 608 W average power picosecond all fiber polarization-maintained amplifier with narrow-band and near-diffraction-limited beam quality[J]. Journal of Optics, 17, 075501(2015).
[275] Liu J, Liu C, Shi H X et al. High-power linearly-polarized picosecond thulium-doped all-fiber master-oscillator power-amplifier[J]. Optics Express, 24, 15005-15011(2016).
[276] Yao W C, Shao Z H, Shen C F et al. Gain-switched laser diode seeded TDFA with 409 W picosecond pulses and 142 W spectrally flat supercontinuum output[J]. Optics Express, 27, 1276-1282(2019).
[278] Yu H L, Wang X L, Zhang H W et al. Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1.06 μm[J]. Journal of Lightwave Technology, 34, 4271-4277(2016).
[279] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 567-577(2005).
[280] Liu Z J, Ma P F, Su R T et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect(Invited)[J]. Journal of the Optical Society of America B, 34, A7-A14(2016).
[281] Goodno G D, Komine H, McNaught S J et al. Coherent combination of high-power, zigzag slab lasers[J]. Optics Letters, 31, 1247-1249(2006).
[282] Ma P F, Zhou P, Ma Y X et al. Coherent polarization beam combining of four fiber amplifiers in 100 ns pulsed-regime[J]. Optics & Laser Technology, 47, 336-340(2013).
[284] Su R T, Zhou P, Zhang P F et al. Review on the progress in coherent beam combining of ultra-short fiber lasers(Invited)[J]. Infrared and Laser Engineering, 47, 0103001(2018).
[285] Wang J, Zhang Y, Wang J et al. Recent progress of coherent combining technology in femtosecond fiber lasers[J]. Acta Physica Sinica, 70, 034206(2021).
[287] Kienel M, Müller M, Klenke A et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 41, 3343-3346(2016).
[288] Mueller M, Klenke A, Stark H et al. 1.8-kW 16-channel ultrafast fiber laser system[J]. Proceedings of SPIE, 10512, 1051208(2018).
[289] Mueller M, Klenke A, Steinkopff A et al. 3.5 kW coherently combined ultrafast fiber laser[J]. Proceedings of SPIE, 10897, 1089719(2019).
[290] Stark H, Buldt J, Müller M et al. 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification[J]. Optics Letters, 44, 5529-5532(2019).
[291] Müeller M, Aleshire C, Klenke A et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 45, 3083-3086(2020).
[292] Stark H, Buldt J, Müller M et al. 1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system[J]. Optics Letters, 46, 969-972(2021).
[293] Tsubakimoto K, Yoshida H, Miyanaga N. 600 W green and 300 W UV light generated from an eight-beam, sub-nanosecond fiber laser system[J]. Optics Letters, 42, 3255-3258(2017).
[294] Feng Y, Jiang H W, Zhang L. Advances in high power Raman fiber laser technology[J]. Chinese Journal of Lasers, 44, 0201005(2017).
[295] Zhou P, Huang L, Xu J M et al. High power linearly polarized fiber laser: generation, manipulation and application[J]. Science China Technological Sciences, 60, 1784-1800(2017).
[296] Lai W C, Ma P F, Xiao H et al. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 32, 7-28(2020).
[297] Hu M L, Cai Y. Research progress on mid-infrared ultrafast fiber laser[J]. Chinese Journal of Lasers, 47, 0500009(2020).
[298] Hou J, Chen S P, Chen Z L et al. Recent developments and key technology analysis of high power supercontinuum source[J]. Laser & Optoelectronics Progress, 50, 080010(2013).
[299] Jiang M, Ma P F, Su R T et al. Research progress and prospect of spectral beam combining(Invited)[J]. Infrared and Laser Engineering, 49, 20201053(2020).
[300] Zhou P, Su R T, Ma Y X et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 48, 0401003(2021).
[301] Zhou P, Huang L J, Leng J Y et al. High-power double-cladding fiber lasers: a 30-year overview[J]. Scientia Sinica (Technologica), 50, 123-135(2020).
[303] Michalska M, Swiderski J, Mamajek M. Arbitrary pulse shaping in Er-doped fiber amplifiers: possibilities and limitations[J]. Optics & Laser Technology, 60, 8-13(2014).
[304] Malinowski A, Vu K T, Chen K K et al. High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping[J]. Optics Express, 17, 20927-20937(2009).
[305] Shi H X, Tan F Z, Cao Y et al. High-power diode-seeded thulium-doped fiber MOPA incorporating active pulse shaping[J]. Applied Physics B, 122, 1-8(2016).
[306] Schimpf D N, Ruchert C, Nodop D et al. Compensation of pulse-distortion in saturated laser amplifiers[J]. Optics Express, 16, 17637-17646(2008).
[307] Vu K T, Malinowski A, Richardson D J et al. Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system[J]. Optics Express, 14, 10996-11001(2006).
[308] Zhou P, Su R T, Huang L J et al. Research progress and future perspective on ultrafast fiber laser enabled by computing technique(Invited)[J]. Infrared and Laser Engineering, 47, 0803001(2018).
[309] Zhang L, Jiang H, Yang X et al. Ultra-wide wavelength tuning of a cascaded Raman random fiber laser[J]. Optics Letters, 41, 215-218(2016).
[310] Zhang L, Jiang H, Yang X et al. Nearly-octave wavelength tuning of a continuous wave fiber laser[J]. Scientific Reports, 7, 42611(2017).
[311] Ye J, Xu J M, Zhang Y et al. Spectrum-manipulable hundred-watt-level high-power superfluorescent fiber source[J]. Journal of Lightwave Technology, 37, 3113-3118(2019).
[312] Ye J, Xu J M, Song J X et al. Pump scheme optimization of an incoherently pumped high-power random fiber laser[J]. Photonics Research, 7, 977-983(2019).
[313] Vikram B S, Choudhury V, Prakash R et al. Continuously linewidth tunable, polarisation maintaining narrow linewidth fiber laser[J]. Proceedings of SPIE, 10897, 108971V(2019).
[314] Xu H, Jiang M, Shi C et al. Spectral shaping for suppressing stimulated-Raman-scattering in a fiber laser[J]. Applied Optics, 56, 3538-3542(2017).
[315] Sun B, Wang A T, Xu L X et al. Transverse mode switchable fiber laser through wavelength tuning[J]. Optics Letters, 38, 667-669(2013).
[316] Huang Y P, Shi F, Wang T et al. High-order mode Yb-doped fiber lasers based on mode-selective couplers[J]. Optics Express, 26, 19171-19181(2018).
[317] Cai Y, Wang Z Q, Wan H D et al. Mode and wavelength-switchable pulsed fiber laser with few-mode fiber grating[J]. IEEE Photonics Technology Letters, 31, 1155-1158(2019).
[318] Wang T, Shi F, Huang Y P et al. High-order mode direct oscillation of few-mode fiber laser for high-quality cylindrical vector beams[J]. Optics Express, 26, 11850-11858(2018).
[319] Li L, Wang M, Liu T et al. High-power, cladding-pumped all-fiber laser with selective transverse mode generation property[J]. Applied Optics, 56, 4967-4970(2017).
[320] Song J X, Xu H Y, Wu H S et al. All-fiberized transverse mode-switching method based on temperature control[J]. Applied Optics, 58, 3696-3702(2019).
[321] Song J X, Xu H Y, Wu H S et al. High power narrow linewidth LP11 mode fiber laser using mode-selective FBGs[J]. Laser Physics Letters, 15, 115101(2018).
[322] Su R T, Yang B L, Xi X M et al. 500 W level MOPA laser with switchable output modes based on active control[J]. Optics Express, 25, 23275-23282(2017).
[323] You Y, Bai G, Zou X X et al. A 1.4-kW mode-controllable fiber laser system[J]. Journal of Lightwave Technology, 39, 2536-2541(2021).
[324] Vukovic N, Chan J S, Codemard C A et al. Multi-kilowatt fibre laser with azimuthal mode output beam for advanced material processing[J]. Proceedings of SPIE, 11266, 1126618(2020).
[328] Snitzer E. Proposed fiber cavities for optical masers[J]. Journal of Applied Physics, 32, 36-39(1961).
[329] Snitzer E. Optical maser action of Nd +3 in a barium crown glass[J]. Physical Review Letters, 7, 444-446(1961).
Get Citation
Copy Citation Text
Pu Zhou, Jinyong Leng, Hu Xiao, Pengfei Ma, Jiangming Xu, Wei Liu, Tianfu Yao, Hanwei Zhang, Liangjin Huang, Zhiyong Pan. High Average Power Fiber Lasers: Research Progress and Future Prospect[J]. Chinese Journal of Lasers, 2021, 48(20): 2000001
Category: reviews
Received: Apr. 6, 2021
Accepted: Jun. 29, 2021
Published Online: Sep. 8, 2021
The Author Email: Zhou Pu (zhoupu203@163.com)