NUCLEAR TECHNIQUES, Volume. 47, Issue 5, 050015(2024)

Noise-robust fusion power supply fault diagnosis based on wavelet integrated one-dimension convolutional neural network

Qin HANG1, Lingpeng ZHONG1, Hua LI2, and Heng ZHANG1、*
Author Affiliations
  • 1College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • 2Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
  • show less
    Figures & Tables(12)
    ELU function
    Transformation of feature to low frequency component
    Process diagram of model structure and training
    The representation of converter units of power supply using Matlab/Simulink
    Schematic diagram of short-circuited thyristor VT1
    Original thyristor short-circuit signal at Id1, the noise (6 dB), and the noisy signal
    Normalized confusion matrix constructed from the results of three branches in proposed approach (left column is branch 1, 2; right column is branch 3)
    Accuracy comparison results of WDCNN, TICNN, ConvLSTM, FaultNet and our method under different intensities of noise (color online)
    • Table 1. Main simulation parameters of converter units

      View table
      View in Article

      Table 1. Main simulation parameters of converter units

      仿真参数

      Simulation entity

      参数值

      Value

      额定电压Rated voltage / kV440
      短路容量Short circuit capacity / GVA10
      降压变容量Step-down transformer capacity / MVA300
      降压变电压Step-down transformer voltage / kV400/66
      环流电抗器Circulation reactor200 μH,300 μΩ
      短路阻抗Short circuit impedance / %11/15.8
      整流变容量Rectifier transformer capacity / MVA78
      整流变电压Rectifier transformer voltage / kV66/1.05
    • Table 2. Description of classes and labels for the simulated power supply dataset

      View table
      View in Article

      Table 2. Description of classes and labels for the simulated power supply dataset

      第一级

      Branch 1

      第二级

      Branch 2

      第三级

      Branch 3

      工况

      Operating condition

      故障详情

      Fault details and source

      000单桥/并联Single bridge/parallel整流/逆变无故障Rec&Inv (normal)
      1整流Rectification整流直流环抗前短路Before (Rec)
      2整流Rectification整流桥晶闸管VT1短路Arm 1 (Rec)
      13~5整流Rectification整流桥晶闸管VT2-5短路Arm 2-5 (Rec)
      6整流Rectification整流桥晶闸管VT6短路Arm 6 (Rec)
      17整流Rectification整流直流环抗后短路After (Rec)
      8逆变Inversion逆变直流环抗前短路Before (Inv)
      9逆变Inversion逆变桥晶闸管VT1短路Arm 1 (Inv)
      210~14逆变Inversion逆变桥晶闸管VT2-5短路Arm 2-5 (Inv)
      15逆变Inversion逆变桥晶闸管VT6短路Arm 6 (Inv)
      16逆变Inversion逆变直流环抗后短路After (Inv)
    • Table 3. Accuracy of the proposed method under different noise environments

      View table
      View in Article

      Table 3. Accuracy of the proposed method under different noise environments

      层级

      Branch levels

      SNR / dB
      0246810
      Branch 197.98 ± 1.7499.12 ± 0.4199.71 ± 0.2299.93 ± 0.07100 ±0.01100 ± 0.01
      Branch 297.32 ± 1.3398.65 ± 1.1498.97 ± 0.5499.39 ± 0.2399.56 ±0.1199.73 ± 0.03
      Branch 388.39 ± 4.5092.13 ± 3.1295.26 ± 2.5796.97 ± 1.8797.48 ± 0.7198.31 ± 0.19
    • Table 4. The diagnostic results of the proposed model and the compared methods under different intensities of noise

      View table
      View in Article

      Table 4. The diagnostic results of the proposed model and the compared methods under different intensities of noise

      数据集

      DataSet

      模型方法

      Methods

      SNR / dB
      0246810

      Power

      Supply

      WDCNN[7]78.2189.6293.9595.6796.6196.89
      TICNN[3]82.5188.7494.6896.7097.1298.37
      ConvLSTM[6]86.0890.9293.8997.4495.8398.22
      FaultNet[8]79.8486.1791.9595.7396.9498.00
      HBD-CNN (ours)88.3992.1395.2696.9797.4898.31
    Tools

    Get Citation

    Copy Citation Text

    Qin HANG, Lingpeng ZHONG, Hua LI, Heng ZHANG. Noise-robust fusion power supply fault diagnosis based on wavelet integrated one-dimension convolutional neural network[J]. NUCLEAR TECHNIQUES, 2024, 47(5): 050015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 8, 2024

    Accepted: --

    Published Online: Jul. 8, 2024

    The Author Email: ZHANG Heng (张恒)

    DOI:10.11889/j.0253-3219.2024.hjs.47.050015

    Topics