Journal of Quantum Optics, Volume. 29, Issue 4, 40101(2023)

Quantum Phase Transition in Rabi Model under Multiple-Photon Transition

LIU Ni1, BAO Rui1, LIU Kai2, HUANG Shan1, and LIANG Jiu-qing1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(16)

    [1] [1] RABI I I. On the process of space quantization[J]. Physical Review, 1936, 49(4):324-328. DOI: 10.1103/Phys Rev.49.324.

    [2] [2] RABI I I. Space quantization in a gyrating magnetic field[J]. Physical Review, 1937, 51(8):652-654. DOI: 10.1103/PhysRev.51.652.

    [3] [3] LIU N, WANG Y M, LIANG J Q. Adiabatic and Non-Adiabatic Berry Phases in Generalized J-C Model of Multi-Photon Process[J]. Communications in Theoretical Physics, 2012, 58(2):271-274. DOI: 10.1088/0253-6102/58/2/17.

    [4] [4] GRADAS B, DAJKA J. Multi-photon Rabi model: Generalized parity and its applications[J]. Physics Letters A, 2013, 377(44):3205-3208. DOI: 10.1016/j.physleta.2013.10.011.

    [5] [5] BRAAK D. On the integrability of the Rabi model[J]. Physical Review Letters, 2011, 107(10):100401. DOI: 10.1103/PhysRevLett.107.100401.

    [6] [6] CHEN Q H, WANG C, HE S, et al. Exact solvability of the quantum Rabi model using Bogoliubov operators[J]. Physical Review A, 2012, 86(2):023822. DOI: 10.1103/PhysRevA.86.023822.

    [7] [7] BLAIS A, HUANG R S, WALLRAFF A, et al. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation[J]. Physical Review A, 2004, 69(6):062320. DOI: 10.1103/PhysRevA.69.062320.

    [8] [8] NIELSEN M A, CHUANG I L. Quantum computation and quantum information[M]. New York: Cambridge University Press, 2000. DOI: https://doi.org/10.1119/1.1463744.

    [10] [10] BIRNBAUM K M, BOCA A, MILLER R, et al. Photon blockade in an optical cavity with one trapped atom[J]. Nature, 2005, 436(7047):87-90. DOI: 10.1038/nature03804.

    [12] [12] SEO K J, TIAN L. Quantum phase transition in a multiconnected superconducting Jaynes-Cummings lattice[J]. Physical Review B, 2015, 91(19):195439. DOI: 10.1103/PhysRevB.91.195439.

    [13] [13] GREINER M, MANDEL O, ESSLINGER T, et al. Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms[J]. Nature, 2002, 415:39-44. DOI: https://doi.org/10.1038/415039a.

    [14] [14] DUAN L W, XIE Y F, BRAAK D, et al. Two-photon Rabi model: analytic solutions and spectral collapse[J]. Journal of Physics A: Mathematical and Theoretical, 2016, 49(46):464002. DOI: https://doi.org/10.1088/1751-8113/49/46/464002.

    [17] [17] KRUIS J, MARIS G. Three representations of the Ising model[J]. Scientific Reports, 2016, 6:34175. DOI: https://doi.org/10.1038srep34175.

    [18] [18] CAO Q, TAN L, LIU W M. Superfluid-Mott-insulator quantum phase transition in a cavity optomagnonic system[J]. Physical Review A, 2022, 105(4):043705. DOI: 10.1103/PhysRevA.105.043705.

    [19] [19] GORBAR E V, GUSYNIN V P, MIRANSKY V A, et al. Dynamics in the quantum Hall effect and the phase diagram of graphene[J]. Physical Review B, 2008, 78(8):085437. DOI: 10.1103/PhysRevB.78.085437.

    Tools

    Get Citation

    Copy Citation Text

    LIU Ni, BAO Rui, LIU Kai, HUANG Shan, LIANG Jiu-qing. Quantum Phase Transition in Rabi Model under Multiple-Photon Transition[J]. Journal of Quantum Optics, 2023, 29(4): 40101

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Sep. 26, 2022

    Accepted: --

    Published Online: Apr. 8, 2024

    The Author Email:

    DOI:0.3788/jqo20232904.0101

    Topics