Acta Optica Sinica, Volume. 44, Issue 4, 0419001(2024)

Passive Q-Switched Laser Based on Zinc Indium Sulfide Nanoflowers

Yixuan Zhu1, Luyang Tong1, Yangjian Cai1,2, Lina Zhao1,2, and Liren Zheng1,2、*
Author Affiliations
  • 1Shandong Provincial Key Laboratory of Optics and Photonic Device, Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, Shandong, China
  • 2Joint Research Center of Light Manipulation Science and Photonic Integrated Chip of East China Normal University and Shandong Normal University, Shanghai 200241, China
  • show less
    References(48)

    [1] Luo Q, Bo F, Kong Y F et al. Advances in lithium niobate thin-film lasers and amplifiers: a review[J]. Advanced Photonics, 5, 034002(2023).

    [2] Lei H, Liu Q, Wang Y et al. Passively Q-switched pulse laser with large core size crystal waveguide near diffraction-limit beam quality output[J]. Acta Optica Sinica, 41, 1214001(2021).

    [3] Liu M L, Liu W J, Liu X M et al. Yttrium oxide as a Q-switcher for the near-infrared erbium-doped fiber laser[J]. Nanophotonics, 9, 2887-2894(2020).

    [4] Wu M J, Tan R Q, Li H et al. Acousto-optic Q-switched radio frequency waveguide CO2 laser with high repetition rate and short pulse width[J]. Chinese Journal of Lasers, 50, 2201008(2023).

    [5] Li L Q, Kong W J, Chen F. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances[J]. Advanced Photonics, 4, 024002(2022).

    [6] Xia S J, Xu B R, Xu P F et al. 1.3 μm high-speed directly modulated semiconductor laser[J]. Acta Optica Sinica, 42, 1614001(2022).

    [7] Cheng Y. First lithium niobate metasurface electro-optic modulator realized[J]. Science China Physics, 64, 240363(2021).

    [8] Ren J J, He Z X, Yu T et al. Research progress of 2 μm band nanosecond thulium-doped fiber laser[J]. Laser & Optoelectronics Progress, 60, 0900003(2023).

    [9] Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 424, 831-838(2003).

    [10] Soavi G, Wang G, Rostami H et al. Broadband, electrically tunable third-harmonic generation in graphene[J]. Nature Nanotechnology, 13, 583-588(2018).

    [11] Jiang T, Huang D, Cheng J L et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene[J]. Nature Photonics, 12, 430-436(2018).

    [12] Guddala S, Kawaguchi Y, Komissarenko F et al. All-optical nonreciprocity due to valley polarization pumping in transition metal dichalcogenides[J]. Nature Communications, 12, 3746(2021).

    [13] Koo J, Jhon Y I, Park J et al. Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking[J]. Advanced Functional Materials, 26, 7454-7461(2016).

    [14] Sun X L, Zhang B T, Li Y L et al. Tunable ultrafast nonlinear optical properties of graphene/MoS2 van der Waals heterostructures and their application in solid-state bulk lasers[J]. ACS Nano, 12, 11376-11385(2018).

    [15] Jung M, Lee J S, Park J et al. Mode-locked, 1.94-μm, all-fiberized laser using WS2-based evanescent field interaction[J]. Optics Express, 23, 19996-20006(2015).

    [16] Lee J, Jhon Y I, Lee K et al. Nonlinear optical properties of arsenic telluride and its use in ultrafast fiber lasers[J]. Scientific Reports, 10, 15305(2020).

    [17] Li L J, Cong C X. Optoelectronic properties and photodetection of two-dimensional black phosphorus[J]. Chinese Journal of Luminescence, 44, 995-1005(2023).

    [18] Liu B Z, Li S C, Wu Z Y et al. Passively Q-switched operation of Tm∶YAP laser with black phosphorus saturable absorber[J]. Laser & Optoelectronics Progress, 60, 0114006(2023).

    [19] Jhon Y I, Koo J, Anasori B et al. Metallic MXene saturable absorber for femtosecond mode-locked lasers[J]. Advanced Materials, 29, 1702496(2017).

    [20] Woodward R I, Howe R C T, Hu G et al. Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives[J]. Photonics Research, 3, A30-A42(2015).

    [21] Woodward R I, Kelleher E J R, Howe R C T et al. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2)[J]. Optics Express, 22, 31113-31122(2014).

    [22] Luo Z Q, Huang Y Z, Zhong M et al. 1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber[J]. Journal of Lightwave Technology, 32, 4679-4686(2014).

    [23] Wang S X, Yu H H, Zhang H J et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 26, 3538-3544(2014).

    [24] Li P X, Zhang G J, Zhang H et al. Q-switched and Q-switched mode-locking operation from Nd∶YVO4 laser using reflective MoS2 saturable absorber[J]. Acta Optica Sinica, 35, s114003(2015).

    [25] Lan R J, Liu G H, Zhao B et al. Pulse energy enhancement in a passively Q-switched Yb∶Lu0.74Y0.23La0.01VO4 laser with ReS2 saturable absorber[J]. Optics Communications, 504, 127484(2022).

    [26] Luan C, Yang K J, Zhao J et al. WS2 as a saturable absorber for Q-switched 2 micron lasers[J]. Optics Letters, 41, 3783-3786(2016).

    [27] Yu J, Kuang X F, Li J Z et al. Giant nonlinear optical activity in two-dimensional palladium diselenide[J]. Nature Communications, 12, 1083(2021).

    [28] Huang J W, Dong N N, McEvoy N et al. Surface-state assisted carrier recombination and optical nonlinearities in bulk to 2D nonlayered PtS[J]. ACS Nano, 13, 13390-13402(2019).

    [29] Liu J T, Yang F, Lu J P et al. High output mode-locked laser empowered by defect regulation in 2D Bi2O2Se saturable absorber[J]. Nature Communications, 13, 3855(2022).

    [30] Zheng X L, Song Y M, Liu Y H et al. ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting[J]. Coordination Chemistry Reviews, 475, 214898(2023).

    [31] Gou X L, Cheng F Y, Shi Y H et al. Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route[J]. Journal of the American Chemical Society, 128, 7222-7229(2006).

    [32] Wu Y, Wang H, Tu W G et al. Petal-like CdS nanostructures coated with exfoliated sulfur-doped carbon nitride via chemically activated chain termination for enhanced visible-light-driven photocatalytic water purification and H2 generation[J]. Applied Catalysis B: Environmental, 229, 181-191(2018).

    [33] Wang H, Yuan X Z, Wang H et al. Facile synthesis of Sb2S3/ultrathin g-C3N4 sheets heterostructures embedded with g-C3N4 quantum dots with enhanced NIR-light photocatalytic performance[J]. Applied Catalysis B: Environmental, 193, 36-46(2016).

    [34] Lei Z B, You W S, Liu M Y et al. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method[J]. Chemical Communications, 2142-2143(2003).

    [35] Fang F, Chen L, Chen Y B et al. Synthesis and photocatalysis of ZnIn2S4 nano/micropeony[J]. The Journal of Physical Chemistry C, 114, 2393-2397(2010).

    [36] Ávila-Godoy R, Mora A J, Acosta-Najarro D R et al. Structure of the quaternary alloy Zn0.6Mn0.4In2S4 from synchrotron powder diffraction and electron transmission microscopy[J]. Journal of Applied Crystallography, 39, 1-5(2006).

    [37] Sriram M A, McMichael P H, Waghray A et al. Chemical synthesis of the high-pressure cubic-spinel phase of ZnIn2S4[J]. Journal of Materials Science, 33, 4333-4339(1998).

    [38] Si S H, Shou H W, Mao Y Y et al. Low-coordination single Au atoms on ultrathin ZnIn2S4 nanosheets for selective photocatalytic CO2 reduction towards CH4[J]. Angewandte Chemie (International Ed. in English), 61, e202209446(2022).

    [39] Yang R J, Mei L, Fan Y Y et al. ZnIn2S4-based photocatalysts for energy and environmental applications[J]. Small Methods, 5, 2100887(2021).

    [40] Zhao C X, Zhang Y Z, Jiang H L et al. Combined effects of octahedron NH2-UiO-66 and flowerlike ZnIn2S4 microspheres for photocatalytic dye degradation and hydrogen evolution under visible light[J]. The Journal of Physical Chemistry C, 123, 18037-18049(2019).

    [41] Pan Y, Yuan X Z, Jiang L B et al. Recent advances in synthesis, modification and photocatalytic applications of micro/nano-structured zinc indium sulfide[J]. Chemical Engineering Journal, 354, 407-431(2018).

    [42] Kumar Y, Kumar R, Raizada P et al. Novel Z-Scheme ZnIn2S4-based photocatalysts for solar-driven environmental and energy applications: progress and perspectives[J]. Journal of Materials Science & Technology, 87, 234-257(2021).

    [43] Wang J, Sun S J, Zhou R et al. A review: synthesis, modification and photocatalytic applications of ZnIn2S4[J]. Journal of Materials Science & Technology, 78, 1-19(2021).

    [44] Zhou K G, Zhao M, Chang M J et al. Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets[J]. Small, 11, 694-701(2015).

    [45] Zhou W, Zou X L, Najmaei S et al. Intrinsic structural defects in monolayer molybdenum disulfide[J]. Nano Letters, 13, 2615-2622(2013).

    [46] Qiu H, Xu T, Wang Z L et al. Hopping transport through defect-induced localized states in molybdenum disulphide[J]. Nature Communications, 4, 2642(2013).

    [47] Du C, Zhang Q, Lin Z Y et al. Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 248, 193-201(2019).

    [48] Zhang Y X, Lu D Z, Yu H H et al. Low-dimensional saturable absorbers in the visible spectral region[J]. Advanced Optical Materials, 7, 1800886(2019).

    Tools

    Get Citation

    Copy Citation Text

    Yixuan Zhu, Luyang Tong, Yangjian Cai, Lina Zhao, Liren Zheng. Passive Q-Switched Laser Based on Zinc Indium Sulfide Nanoflowers[J]. Acta Optica Sinica, 2024, 44(4): 0419001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nonlinear Optics

    Received: Oct. 27, 2023

    Accepted: Nov. 27, 2023

    Published Online: Feb. 27, 2024

    The Author Email: Zheng Liren (zlrgym@sdnu.edu.cn)

    DOI:10.3788/AOS231707

    CSTR:32393.14.AOS231707

    Topics