Chinese Journal of Lasers, Volume. 50, Issue 23, 2301014(2023)
Ultrastable-Cavity-Based PDH Frequency Stabilization for 2
[1] Sutton A, Shaddock D A. Laser frequency stabilization by dual arm locking for LISA[J]. Physical Review D, 78, 082001(2008).
[2] Ye J, Ma L S, Hall J L. Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy[J]. Journal of the Optical Society of America B, 15, 6-15(1998).
[3] Yu Y, Ma F, Luo X Y et al. Entanglement of two quantum memories via fibres over dozens of kilometres[J]. Nature, 578, 240-245(2020).
[4] Wei S S, Liu Y H, Chen Q F et al. Sideband-locked high-power 780 nm laser source for precise measurement based on Rb atoms[J]. Chinese Journal of Lasers, 48, 0701008(2021).
[5] Qi H H, Yang B W, Zhao H J et al. Narrow linewidth laser frequency stabilization system applied to integrating sphere cold atomic clocks[J]. Laser & Optoelectronics Progress, 60, 1514008(2023).
[6] Seel S, Storz R, Ruoso G et al. Cryogenic optical resonators: a new tool for laser frequency stabilization at the 1 Hz level[J]. Physical Review Letters, 78, 4741-4744(1997).
[7] Young B C, Cruz F C, Itano W M et al. Visible lasers with subhertz linewidths[J]. Physical Review Letters, 82, 3799-3802(1999).
[8] Guan H, Liu Q, Huang Y et al. A 729 nm laser with ultra-narrow linewidth for probing 4S1/2‒3D5/2 clock transition of 40Ca+[J]. Optics Communications, 284, 217-221(2011).
[9] Wu L F, Jiang Y Y, Ma C Q et al. 0.26-Hz-linewidth ultrastable lasers at 1557 nm[J]. Scientific Reports, 6, 24969(2016).
[10] Drever R W P, Hall J L, Kowalski F V et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 31, 97-105(1983).
[11] Chen Y L, Feng Y N, Yan Z H et al. Optimization of optical resonator locking by fuzzy algorithm (invited)[J]. Infrared and Laser Engineering, 51, 20220781(2022).
[12] Jost J, Hall J, Ye J. Continuously tunable, precise, single frequency optical signal generator[J]. Optics Express, 10, 515-520(2002).
[13] Kessler T, Hagemann C, Grebing C et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 6, 687-692(2012).
[14] Matei D G, Legero T, Häfner S et al. 1.5 μm lasers with sub 10 mHz linewidth[J]. Physical Review Letters, 118, 263202(2017).
[15] Tai Z Y, Yan L L, Zhang Y Y et al. Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth[J]. Chinese Physics Letters, 34, 090602(2017).
[16] Yao B, Chen Q F, Chen Y J et al. 280 mHz linewidth DBR fiber laser based on PDH frequency stabilization with ultrastable cavity[J]. Chinese Journal of Lasers, 48, 0501014(2021).
[17] Liu H W. Design and development of a single longitudinal mode narrow linewidth fiber laser[D](2021).
[18] Wang D, Huang A J, Sun W Y et al. Practical single-photon-assisted remote state preparation with non-maximally entanglement[J]. Quantum Information Processing, 15, 3367-3381(2016).
[19] Tran M A, Huang D N, Bowers J E. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration[J]. APL Photonics, 4, 111101(2019).
[20] Chen L, Zhang L B, Xu G J et al. 698-nm diode laser with 1-Hz linewidth[J]. Optical Engineering, 56, 016101(2017).
Get Citation
Copy Citation Text
Xiaobing Liu, Bin Wang, Bo Yao, Xiumei Yang, Chunge Yue, Qinghe Mao. Ultrastable-Cavity-Based PDH Frequency Stabilization for 2
Category: laser devices and laser physics
Received: Apr. 6, 2023
Accepted: May. 17, 2023
Published Online: Dec. 7, 2023
The Author Email: Mao Qinghe (mqinghe@aiofm.ac.cn)