NUCLEAR TECHNIQUES, Volume. 48, Issue 7, 070031(2025)

Numerical simulation analysis and experimental validation for the reactor cavity of molten salt reactor

Mudan MEI1,2, Chong ZHOU1,2、*, Yang ZOU1,2、**, Yao FU1,2、***, and Naxiu WANG1,2
Author Affiliations
  • 1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(20)
    Schematic diagram of simulated reactor (color online)
    The diagram of heat transfer process for the lower reactor cavity
    Diagram of geometric model of the reactor cavity of simulated reactor (color online)(a) Upper reactor cavity, (b) Lower reactor cavity
    Module division of the upper reactor cavity (color online)
    Partial mesh form for the upper and lower reactor cavity (color online)(a) Upper reactor cavity, (b) Lower reactor cavity
    The temperature contours of the air in the upper cavity under three calculated conditions (color online)(a) 510 ℃, (b) 550 ℃, (c) 600 ℃
    Temperature distribution of the designated air zone in the upper cavity (color online)(a) Radial air temperature at a height of 5 m, (b) Axial air temperature at a distance of 1 m from the center of the simulated model
    Simulation results for the upper silo of simulated reactor (color online) (a) The temperature contour of the lower reactor silo, (b) Air radial temperature contour at a height of 5 m, (c) The flow field distribution of the upper cavity, (d) The temperature distribution of the upper surface of the top cap
    Calculated temperature values in the major zones of the upper reactor cavity under three simulation conditions (color online)
    Illustration of main temperature measure points (red dots) in the upper reactor cavity (color online)
    Simulation results for the lower cavity of simulated reactor (color online) (a) The temperature contour of the lower reactor cavity, (b) The wall temperature distribution of heating rods, (c) The wall temperature distribution of the heat ex-changer
    Calculated temperature values in the major zones of the lower reactor cavity under three simulation conditions (color online)
    Illustration of the main temperature measure points in the lower reactor cavity (color online)
    Distribution of heat transfer power on the wall surface of reactor pressure vessel (color online)
    Distribution of heat transfer power on the surface of heat ex-changer from PRHRS (color online)
    Simulation deviation curves for the upper (a) / lower (b) cavity at the 510 °C calculated condition (color online)
    • Table 1. The sizes of the main structural parameters in the silo of the simulated reactor

      View table
      View in Article

      Table 1. The sizes of the main structural parameters in the silo of the simulated reactor

      模型主要结构参数The primary structural parameters in the model尺寸Size / m
      上堆舱高度The height of the upper reactor cavity6.26
      上/下堆舱外墙内径The inner diameter of the outer wall of the upper/lower reactor silo2.8
      堆容器外径The outer diameter of the reactor pressure vessel1.02
      堆容器高度The height of the reactor pressure vessel3.6
      余排换热装置内径/外径The inner/outer diameter of heat ex-changer1.42 / 1.72
      下堆舱侧保温棉内径/外径The inner/outer diameter of the insulation cotton on the side of lower reactor cavity1.2 / 2.8
      下堆舱底端的保温棉厚度The thickness of the insulation cotton at the bottom of the lower reactor cavity0.5
    • Table 2. Physical properties of the structural materials for the simulated reactor

      View table
      View in Article

      Table 2. Physical properties of the structural materials for the simulated reactor

      材料

      Material

      密度

      Density / kg·m-3

      比热

      Specific heat / J·(kg·K)-1

      导热系数

      Thermal conductivity / W·(m·K)-1

      发射率

      Emissivity

      哈氏合金

      Hastelloy

      500 ℃@8 690

      600 ℃@8 660

      700 ℃@8 620

      800 ℃@8 570

      500 ℃@480

      600 ℃@470

      700 ℃@590

      800 ℃@600

      500 ℃@18.57

      600 ℃@19.0

      700 ℃@25.4

      800 ℃@24.72

      0.3

      碳素钢

      Carbon steel

      7 850480

      λ=72.289-0.039 1·T(K)-

      6×10- 6T(K)2

      0.3

      硅酸铝纤维

      Alumina silicate fiber

      2201 1400.1530.8
    • Table 3. Grid independence analysis

      View table
      View in Article

      Table 3. Grid independence analysis

      网格尺寸Mesh size2 mm×10 mm2 mm×20 mm5 mm×10 mm5 mm×20 mm
      上/下堆舱模型总网格数Mesh number / 1045 0173 7262 5151 424

      顶盖上表面温度

      Upper surface temperature of the top cap / ℃

      147.8148.1148144.3

      加热棒附近的空气平均流速

      The average air flow velocity near the heating rod / v·s-1

      0.3840.3850.3850.372

      上堆舱内空气平均温度

      The average air temperature in the upper cavity / ℃

      43.043.243.141.6

      下堆舱内空气平均温度

      The average air temperature in the lower cavity / ℃

      497.9498.2498.1495.4

      保温层外壁面温度

      Outer wall temperature of the simulation layer / ℃

      42.542.342.440.0
    • Table 4. Experimental value and CFD calculated value for the upper/lower cavity of simulated reactor

      View table
      View in Article

      Table 4. Experimental value and CFD calculated value for the upper/lower cavity of simulated reactor

      上/下堆舱测温点的描述与位置(R,θ,Z)

      Temperature point position of the upper/lower cavity

      实验值

      Experimental value

      / ℃

      计算值

      Calculated value

      / ℃

      偏差

      Deviation / %

      上堆舱内空气域(261, 225°, 5 800)

      Air area in the upper cavity

      49.9548.033.8
      54.956.73.2

      顶盖上表面(360, 225°, 4 871)

      Upper surface of the top cap of reactor container

      124.65129.974.1

      顶盖上保温层上表面(300, 90°, 4 621)

      Upper surface of the upper insulation layer of the top cap

      70.7975.356.1

      上堆舱隔热层(1 000, 270°, 3 916)

      Insulation layer of the upper cavity

      60.1657.544.4

      堆容器支撑梁(600, 45°, 4 211)

      Support beams of reactor container

      70.4967.933.6

      上堆舱外墙(261, 315°, 7 900)

      Outside wall of the upper cavity

      35.8437.955.6

      下堆舱余排换热装置内壁面(710, 210°, 2 200)

      Inner wall of residual heat removal equipment in the lower cavity

      506.12490.083.2

      下堆舱余排换热装置外壁面(863, 150°, 2 200)

      Outer wall of residual heat removal equipment in the lower cavity

      504.25486.313.6

      下堆舱隔热层顶端(903, 120°, 2 810)

      The up of insulation layer in the lower cavity

      470.36478.621.7

      下堆舱隔热层底端(0, 0°, 250)

      The down of insulation layer in the lower cavity

      308.53304.681.3
    Tools

    Get Citation

    Copy Citation Text

    Mudan MEI, Chong ZHOU, Yang ZOU, Yao FU, Naxiu WANG. Numerical simulation analysis and experimental validation for the reactor cavity of molten salt reactor[J]. NUCLEAR TECHNIQUES, 2025, 48(7): 070031

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue on The First Academic Annual Conference of the Research Reactor and Innovative Reactor Association of Chinese Nuclear Society and Advanced Nuclear Power System Reactor Engineering

    Received: Nov. 8, 2024

    Accepted: --

    Published Online: Sep. 15, 2025

    The Author Email: Chong ZHOU (ZHOUChong), Yang ZOU (ZOUYang), Yao FU (FUYao)

    DOI:10.11889/j.0253-3219.2025.hjs.48.240424

    Topics