Infrared Technology, Volume. 46, Issue 12, 1355(2024)

Infrared Gas Image Segmentation Method Based on Background Modeling and Density Clustering

Xia WANG1,2, Shiwei XU1,2, Kangjun DONG1,2, and Weiqi JIN1,2
Author Affiliations
  • 1School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China
  • 2Key Laboratory of Optoelectronic Imaging Technology and System, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
  • show less
    References(22)

    [1] [1] LI H, LUO D, SUN Y, et al. Classification and identification of industrial gases based on electronic nose technology[J]. Sensors, 2019, 19(22): 5033.

    [2] [2] ZHU Y, QIAN X, LIU Z, et al. Analysis and assessment of the Qingdao crude oil vapor explosion accident: lessons learnt[J]. Journal of Loss Prevention in the Process Industries, 2015, 33: 289-303.

    [3] [3] Zipser L, Wchter F, Franke H. Acoustic gas sensors using airborne sound properties[J]. Sensors and Actuators B: Chemical, 2000, 68(1-3): 162-167.

    [4] [4] Sekhar P K, Brosha E L. Trace detection of 2, 4, 6-trinitrotoluene using electrochemical gas sensor[J]. IEEE Sensors Journal, 2014, 15(3): 1624-1629.

    [5] [5] XUE F, Adedokun G, XIE D, et al. A low power four-channel metal oxide semiconductor gas sensor array with T-shaped structure[J]. Journal of Microelectromechanical Systems, 2022, 31(2): 275-282.

    [6] [6] Meribout M, Khezzar L, Azzi A, et al. Leak detection systems in oil and gas fields: Present trends and future prospects[J]. Flow Measurement and Instrumentation, 2020, 75: 101772.

    [7] [7] Meribout M. Gas leak-detection and measurement systems: Prospects and future trends[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13.

    [8] [8] Usamentiaga R, Venegas P, Guerediaga J, et al. Infrared thermography for temperature measurement and non-destructive testing[J]. Sensors, 2014, 14(7): 12305-12348.

    [9] [9] Safitri A, Gao X, Mannan M S. Dispersion modeling approach for quantification of methane emission rates from natural gas fugitive leaks detected by infrared imaging technique[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(2): 138-145.

    [10] [10] ZHOU K, WANG Y, LV T, et al. Explore spatio-temporal aggregation for insubstantial object detection: benchmark dataset and baseline[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 3104-3115.

    [11] [11] WANG J, Tchapmi L P, Ravikumar A P, et al. Machine vision for natural gas methane emissions detection using an infrared camera[J]. Applied Energy, 2020, 257: 113998.

    [12] [12] SHI J, CHANG Y, XU C, et al. Real-time leak detection using an infrared camera and faster R-CNN technique[J]. Computers & Chemical Engineering, 2020, 135: 106780.

    [13] [13] Bin J, Bahrami Z, Rahman C A, et al. Foreground fusion-based liquefied natural gas leak detection framework from surveillance thermal imaging[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 7(4): 1151-1162.

    [14] [14] Park J S, SONG J K. FCN based gas leakage segmentation and improvement using transfer learning[C]//2019 IEEE Student Conference on Electric Machines and Systems (SCEMS 2019)of IEEE, 2019: 1-4.

    [15] [15] WANG Z, LIAO K, XIONG J, et al. Moving object detection based on temporal information[J]. IEEE Signal Processing Letters, 2014, 21(11): 1403-1407.

    [16] [16] Agarwal A, Gupta S, Singh D K. Review of optical flow technique for moving object detection[C]//2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)of IEEE, 2016: 409-413.

    [17] [17] XUE W, JIANG T. An adaptive algorithm for target recognition using Gaussian mixture models[J]. Measurement, 2018, 124: 233-240.

    [18] [18] Barnich O, Van Droogenbroeck M. ViBe: a powerful random technique to estimate the background in video sequences[C]//2009 IEEE International Conference on Acoustics, Speech and Signal Processing of IEEE, 2009: 945-948.

    [21] [21] ZUO J, JIA Z, YANG J, et al. Moving target detection based on improved Gaussian mixture background subtraction in video images[J]. IEEE Access, 2019, 7: 152612-152623.

    [22] [22] SHEN J, HAO X, LIANG Z, et al. Real-time superpixel segmentation by DBSCAN clustering algorithm[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5933-5942.

    [23] [23] Dhanachandra N, Manglem K, Chanu Y J. Image segmentation using K-means clustering algorithm and subtractive clustering algorithm[J]. Procedia Computer Science, 2015, 54: 764-771.

    [24] [24] Ankerst M, Breunig M M, Kriegel H P, et al. OPTICS: Ordering points to identify the clustering structure[J]. ACM Sigmod Record, 1999, 28(2): 49-60.

    Tools

    Get Citation

    Copy Citation Text

    WANG Xia, XU Shiwei, DONG Kangjun, JIN Weiqi. Infrared Gas Image Segmentation Method Based on Background Modeling and Density Clustering[J]. Infrared Technology, 2024, 46(12): 1355

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 16, 2024

    Accepted: Jan. 14, 2025

    Published Online: Jan. 14, 2025

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics