Journal of Hebei University of Technology, Volume. 54, Issue 3, 24(2025)
Anisotropic flow simulation in three-dimensional porous media
[9] [9] ZHAO C Y, LU W, TIAN Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J]. Solar Energy, 2010, 84(8): 1402-1412.
[10] [10] GAO D Y, CHEN Z Q, SHI M H, et al. Study on the melting process of phase change materials in metal foams using lattice Boltzmann method[J]. Science China Technological Sciences, 2010, 53(11): 3079-3087.
[11] [11] MESALHY O, LAFDI K, ELGAFY A, et al. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix[J]. Energy Conversion and Management, 2005, 46(6): 847-867.
[12] [12] HUANG X P, SUN C, CHEN Z Q, et al. Experimental and numerical studies on melting process of phase change materials (PCMs) embedded in open-cells metal foams[J]. International Journal of Thermal Sciences, 2021, 170: 107151.
[13] [13] FENG G P, FENG Y H, QIU L, et al. Pore scale simulation for melting of composite phase change materials considering interfacial thermal resistance[J]. Applied Thermal Engineering, 2022, 212: 118624.
[14] [14] HUO Y T, GUO Y Q, RAO Z H. Investigation on the thermal performance of phase change material/porous medium-based battery thermal management in pore scale[J]. International Journal of Energy Research, 2019, 43(2): 767-778.
[15] [15] PARIDAA, BHATTACHARYAA, RATH P. Effect of convection on melting characteristics of phase change material-metal foam composite thermal energy storage system[J]. Journal of Energy Storage, 2020, 32: 101804.
[16] [16] CAO Y D, FAGHRI A, CHANG W S. A numerical analysis of Stefan problems for generalized multi-dimensional phase-change structures using the enthalpy transforming model[J]. International Journal of Heat and Mass Transfer, 1989, 32(7): 1289-1298.
[17] [17] CAO Y, FAGHRI A. A numerical analysis of phase-change problems including natural convection[J]. Journal of Heat Transfer, 1990, 112(3): 812-816.
[18] [18] PICHANDI P, ANBALAGAN S. Natural convection heat transfer and fluid flow analysis in a 2D square enclosure with sinusoidal wave and different convection mechanism[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2018, 28(9): 2158-2188.
[19] [19] GUO Z L, ZHENG C G, SHI B C. Discrete lattice effects on the forcing term in the lattice Boltzmann method[J]. Physical Review E, 2002, 65 (4): 046308.
[20] [20] HUO Y T, RAO Z H. The improved enthalpy-transforming based lattice Boltzmann model for solid-liquid phase change[J]. International Journal of Heat and Mass Transfer, 2019, 133: 861-871.
[21] [21] SILVA G, SEMIAO V. Truncation errors and the rotational invariance of three-dimensional lattice models in the lattice Boltzmann method[J]. Journal of Computational Physics, 2014, 269: 259-279.
Get Citation
Copy Citation Text
HUO Yutao, ZHENG Jiaming, LIU Chenzhen, RAO Zhonghao. Anisotropic flow simulation in three-dimensional porous media[J]. Journal of Hebei University of Technology, 2025, 54(3): 24
Category:
Received: Mar. 24, 2025
Accepted: Aug. 22, 2025
Published Online: Aug. 22, 2025
The Author Email: RAO Zhonghao (raozhonghao@hebut.edu.cn)