Opto-Electronic Engineering, Volume. 51, Issue 9, 240106-1(2024)
Dual channel encrypted free-space optical communication system
[1] Wang G Q, Habib U, Yan Z J et al. Highly efficient optical beam steering using an in-fiber diffraction grating for full duplex indoor optical wireless communication[J]. J Lightw Technol, 36, 4618-4625(2018).
[2] Wang G Q, Shao L Y, Xiao D R et al. Stable and highly efficient free-space optical wireless communication system based on polarization modulation and in-fiber diffraction[J]. J Lightw Technol, 39, 83-90(2021).
[3] Wang K, Nirmalathas A, Lim C et al. High-speed duplex optical wireless communication system for indoor personal area networks[J]. Opt Express, 18, 25199-25216(2010).
[4] Wang C, Yu H Y, Zhu Y J. A long distance underwater visible light communication system with single photon avalanche diode[J]. IEEE Photonics J, 8, 7906311(2016).
[5] Wang B, Wu Q, Liu L Q et al. Research progress on the underwater wireless optical communication system[J]. Laser Technol, 46, 99-109(2022).
[6] Hou D, Ren J W, Guo G K et al. Progress on high-precision laser-based underwater frequency transfer[J]. Opto-Electron Eng, 50, 220149(2023).
[7] Oh C W, Tangdiongga E, Koonen A M J. Steerable pencil beams for multi-Gbps indoor optical wireless communication[J]. Opt Lett, 39, 5427-5430(2014).
[8] Gomez A, Shi K, Quintana C et al. Beyond 100-Gb/s indoor wide field-of-view optical wireless communications[J]. IEEE Photonics Technol Lett, 27, 367-370(2015).
[9] Baba A A, Hashmi R M, Esselle K P et al. A millimeter-wave antenna system for wideband 2-D beam steering[J]. IEEE Trans Antennas Propag, 68, 3453-3464(2020).
[10] Wang G Q, Habib U, Wang C et al. Wavelength-controlled beam steering for optical wireless transmission using an in-fiber diffraction grating[C](2017).
[11] Kim J, Miskiewicz M N, Serati S et al. Nonmechanical laser beam steering based on polymer polarization gratings: design optimization and demonstration[J]. J Lightw Technol, 33, 2068-2077(2015).
[12] Doylend J K, Heck M J R, Bovington J T et al. Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator[J]. Opt Express, 19, 21595-21604(2011).
[13] Kang J S, Zhou Y P, Sun L R et al. Design of alignment subsystem for laser wireless power transmission system[J]. Opto-Electron Eng, 50, 230109(2023).
[14] Liang J Y, Chen R D, Yao H F et al. Research progress of acquisition, pointing and tracking in optical wireless communication system[J]. Opto-Electron Eng, 49, 210439(2022).
[15] Wang G Q, Wang C, Yan Z J et al. Highly efficient spectrally encoded imaging using a 45° tilted fiber grating[J]. Opt Lett, 41, 2398-2401(2016).
[16] Bandyopadhyay S, Shao L Y, Chao W et al. Highly efficient free-space fiber coupler with 45° tilted fiber grating to access remotely placed optical fiber sensors[J]. Opt Express, 28, 16569-16578(2020).
[17] Wang G Q, Yan Z J, Yang L et al. Improved resolution optical time stretch imaging based on high efficiency in-fiber diffraction[J]. Sci Rep, 8, 600(2018).
[18] Wang G Q, Zhou Y, Zhao F et al. A compact and highly efficient compressive sensing imaging system using in-fiber grating[J]. IEEE Photonics Technol Lett, 35, 195-198(2023).
[19] Yan Z, Mou C, Zhou K et al. UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings[J]. J Lightw Technol, 29, 2715-2724(2011).
[20] Wang G Q, Xiao D R, Shao L Y et al. An undersampling communication system based on compressive sensing and in-fiber grating[J]. IEEE Photonics J, 13, 7300507(2021).
[21] Jalali B, Asghari M H. The anamorphic stretch transform: putting the squeeze on ‘Big data’[J]. Opt Photonics News, 25, 24-31(2014).
[22] Wang G Q, Zhao F, Xiao D R et al. Highly efficient single-pixel imaging system based on the STEAM structure[J]. Opt Express, 29, 43203-43211(2021).
[23] Shin J, Bosworth B T, Foster M A. Single-pixel imaging using compressed sensing and wavelength-dependent scattering[J]. Opt Lett, 41, 886-889(2016).
[24] Guo Q, Chen H W, Weng Z L et al. Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition[J]. Opt Express, 23, 29639-29646(2015).
[25] Wang G Q, Shao L Y, Liu Y B et al. Low-cost compressive sensing imaging based on spectrum-encoded time-stretch structure[J]. Opt Express, 29, 14931-14940(2021).
[26] Valley G C, Sefler G A, Shaw T J. Compressive sensing of sparse radio frequency signals using optical mixing[J]. Opt Lett, 37, 4675-4677(2012).
[27] Mididoddi C K, Bai F L, Wang G Q et al. High-Throughput photonic time-stretch optical coherence tomography with data compression[J]. IEEE Photonics J, 9, 3901015(2027).
[28] Mididoddi C K, Wang G Q, Wang C. Data compressed photonic time-stretch optical coherence tomography[C], 13-14(2016).
[29] Riofrio C A, Gross D, Flammia S T et al. Experimental quantum compressed sensing for a seven-qubit system[J]. Nat Commun, 8, 15305(2017).
[30] Tropp J A, Laska J N, Duarte M F et al. Beyond Nyquist: efficient sampling of sparse bandlimited signals[J]. IEEE Trans Inf Theory, 56, 520-544(2010).
[31] Zhou K M, Simpson G, Chen X F et al. High extinction ratio in-fiber polarizers based on 45° tilted fiber Bragg gratings[J]. Opt Lett, 30, 1285-1287(2005).
[32] Zhao Y, Wang Q, Huang H. Characteristics and applications of tilted fiber Bragg gratings[J]. J Optoelectron Adv Mater, 12, 2343-2354(2010).
[33] Ke X Z, Liang J Y, Xu D S et al. Research progress of pulse position modulation technology in optical wireless communication[J]. Opto-Electron Eng, 49, 210387(2022).
Get Citation
Copy Citation Text
Guoqing Wang, Rui Min, Xingquan Li, Haiping Zhang, Fang Zhao, Liyang Shao, Ping Shen. Dual channel encrypted free-space optical communication system[J]. Opto-Electronic Engineering, 2024, 51(9): 240106-1
Category: Article
Received: May. 8, 2024
Accepted: Aug. 9, 2024
Published Online: Dec. 12, 2024
The Author Email: