Journal of Atmospheric and Environmental Optics, Volume. 18, Issue 5, 434(2023)

Atmospheric visibility prediction method based on ConvLSTM and PredRNN

BAO Xulun1, LI Yi2、*, Hu Yiwen2,3, WANG Yang4, NIU Dan5, ZANG Zengliang2, and CHEN Xisong5
Author Affiliations
  • 1School of Software, Southeast University, Suzhou 215123, China
  • 2College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410000, China
  • 3College of Atmospheric Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • 4Beijing Hongxiang Technology Co., LTD, Beijing 100089, China
  • 5School of Automation, Southeast University, Nanjing 211189, China
  • show less
    References(16)

    [1] Wen J P, Lan J, Liu F. Experiment on objective forecast methods for the low visibility of Guangzhou Baiyun Airport[J]. Advances in Meteorological Science and Technology, 11, 176-180(2021).

    [3] Su J X, Wang S T, Chen H M et al. Atmospheric visibility forcast based on GA-BP neural network model[J]. Computer Knowledge and Technology, 16, 19-21(2020).

    [4] Shi X J, Chen Z R, Wang H et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C], 802-810(2015).

    [5] Guo H Y, Chen M X, Han L et al. High resolution nowcasting experiment of severe convection based on deep learning[J]. Acta Meteorologica Sinica, 77, 715-727(2019).

    [6] Niu D, Huang J H, Zang Z L et al. Two-stage spatiotemporal context refinement network for precipitation nowcasting[J]. Remote Sensing, 13, 4285(2021).

    [7] Xu Z R, Wang Y B, Long M S et al. PredCNN: Predictive learning with cascade convolutions[C], 2940-2947(2018).

    [8] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 323, 533-536(1986).

    [9] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 9, 1735-1780(1997).

    [10] Jiang L, Wang B S, Hong L et al. Airport visibility prediction based on CNN deep learning model[J]. China Computer & Communication, 32, 43-46(2020).

    [11] Deng T. Airport Visibility Prediction Based on LSTM Neural Network[D](2019).

    [12] Wang Y B, Long M S, Wang J M et al. PredRNN: Recurrent neural networks for predictive learning using spatiotemporal LSTMs[C], 879-888(2017).

    [13] LeCun Y, Bottou L, Bengio Y et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998).

    [14] Oh J, Guo X, Lee H et al. Action-conditional video prediction using deep networks in Atari Games[C], 2863-2871(2015).

    [15] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 13, 600-612(2004).

    [16] Zhang R, Isola P, Efros A A et al. The unreasonable effectiveness of deep features as a perceptual metric[C], 586-595(2018).

    Tools

    Get Citation

    Copy Citation Text

    Xulun BAO, Yi LI, Yiwen Hu, Yang WANG, Dan NIU, Zengliang ZANG, Xisong CHEN. Atmospheric visibility prediction method based on ConvLSTM and PredRNN[J]. Journal of Atmospheric and Environmental Optics, 2023, 18(5): 434

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 11, 2022

    Accepted: --

    Published Online: Dec. 1, 2023

    The Author Email: Yi LI (liyiqxxy@163.com)

    DOI:10.3969/j.issn.1673-6141.2023.05.004

    Topics