Opto-Electronic Engineering, Volume. 51, Issue 8, 240071(2024)
Research progress of terahertz vector beams
[1] Carr G L, Martin M C, McKinney W R et al. High-power terahertz radiation from relativistic electrons[J]. Nature, 420, 153-156(2002).
[2] Kim K Y, Taylor A J, Glownia J H et al. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions[J]. Nat Photonics, 2, 605-609(2008).
[3] Hoffmann S, Hofmann M R. Generation of Terahertz radiation with two color semiconductor lasers[J]. Laser Photonics Rev, 1, 44-56(2007).
[4] Mittleman D M. Twenty years of terahertz imaging [Invited][J]. Opt Express, 26, 9417-9431(2018).
[5] Kawano Y, Ishibashi K. An on-chip near-field terahertz probe and detector[J]. Nat Photonics, 2, 618-621(2008).
[6] Federici J, Moeller L. Review of terahertz and subterahertz wireless communications[J]. J Appl Phys, 107, 111101(2010).
[7] Alves F, Grbovic D, Kearney B et al. Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber[J]. Opt Lett, 37, 1886-1888(2012).
[8] Sen P, Siles J V, Thawdar N et al. Multi-kilometre and multi-gigabit-per-second sub-terahertz communications for wireless backhaul applications[J]. Nat Electron, 6, 164-175(2023).
[9] Koenig S, Lopez-Diaz D, Antes J et al. Wireless sub-THz communication system with high data rate[J]. Nat Photonics, 7, 977-981(2013).
[10] Dhillon S S, Vitiello M S, Linfield E H et al. The 2017 terahertz science and technology roadmap[J]. J Phys D Appl Phys, 50, 043001(2017).
[11] Fan K B, Suen J Y, Liu X Y et al. All-dielectric metasurface absorbers for uncooled terahertz imaging[J]. Optica, 4, 601-604(2017).
[12] Yang X, Zhao X, Yang K et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends Biotechnol, 34, 810-824(2016).
[13] Wang B, Zhong S C, Lee T L et al. Non-destructive testing and evaluation of composite materials/structures: a state-of-the-art review[J]. Adv Mech Eng, 12(2020).
[14] Cheng Y Y, Wang Y X, Niu Y Y et al. Concealed object enhancement using multi-polarization information for passive millimeter and terahertz wave security screening[J]. Opt Express, 28, 6350-6366(2020).
[15] Chernomyrdin N V, Musina G R, Nikitin P V et al. Terahertz technology in intraoperative neurodiagnostics: a review[J]. Opto-Electron Adv, 6, 220071(2023).
[16] Wätzel J, Berakdar J. Open-circuit ultrafast generation of nanoscopic toroidal moments: the swift phase generator[J]. Adv Quantum Tech, 2, 1800096(2019).
[17] Wang K L, Mittleman D M. Metal wires for terahertz wave guiding[J]. Nature, 432, 376-379(2004).
[18] Deibel J A, Wang K L, Escarra M D et al. Enhanced coupling of terahertz radiation to cylindrical wire waveguides[J]. Opt Express, 14, 279-290(2006).
[19] Navarro-Cía M, Wu J, Liu H Y et al. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides[J]. Sci Rep, 6, 38926(2016).
[20] Tian X Y, Ma A N, Huang H F et al. Three-in-one polarization detector enabled by metasurface[J]. Phys Scr, 99, 025531(2024).
[21] Fujita H, Tada Y, Sato M. Accessing electromagnetic properties of matter with cylindrical vector beams[J]. New J Phys, 21, 073010(2019).
[22] Lamberg J, Zarrinkhat F, Tamminen A et al. Wavefront-modified vector beams for THz cornea spectroscopy[J]. Opt Express, 31, 40293-40307(2023).
[23] Wätzel J, Sherman E Y, Berakdar J. Nanostructures in structured light: photoinduced spin and orbital electron dynamics[J]. Phys Rev B, 101, 235304(2020).
[24] Wätzel J, Berakdar J, Sherman E Y. Ultrafast entanglement switching and singlet-triplet transitions control via structured terahertz pulses[J]. New J Phys, 24, 043016(2022).
[25] Miyamoto K, Kang B J, Kim W T et al. Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate[J]. Sci Rep, 6, 38880(2016).
[26] Minkevičius L, Jokubauskis D, Kašalynas I et al. Bessel terahertz imaging with enhanced contrast realized by silicon multi-phase diffractive optics[J]. Opt Express, 27, 36358-36367(2019).
[27] Woldegeorgis A, Kurihara T, Almassarani M et al. Multi-MV/cm longitudinally polarized terahertz pulses from laser-thin foil interaction[J]. Optica, 5, 1474-1477(2018).
[28] Yue F Y, Aglieri V, Piccoli R et al. Highly sensitive polarization rotation measurement through a high-order vector beam generated by a metasurface[J]. Adv Mater Technol, 5, 1901008(2020).
[29] Nanni E A, Huang W R, Hong K H et al. Terahertz-driven linear electron acceleration[J]. Nat Commun, 6, 8486(2015).
[30] Hibberd M T, Healy A L, Lake D S et al. Acceleration of relativistic beams using laser-generated terahertz pulses[J]. Nat Photonics, 14, 755-759(2020).
[31] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 10, 937-943(2015).
[32] Zhang F, Pu M B, Guo Y H et al. Synthetic vector optical fields with spatial and temporal tunability[J]. Sci China Phys Mech Astron, 65, 254211(2022).
[33] Zhang F, Guo Y H, Pu M B et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption[J]. Nat Commun, 14, 1946(2023).
[34] Bao Y J, Yu Y, Xu H F et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control[J]. Light Sci Appl, 8, 95(2019).
[35] Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces[J]. Small Methods, 1, 1600064(2017).
[36] Lepeshov S, Gorodetsky A, Krasnok A et al. Enhancement of terahertz photoconductive antenna operation by optical nanoantennas[J]. Laser Photonics Rev, 11, 1600199(2017).
[37] Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients[J]. Nat Photonics, 7, 680-690(2013).
[38] Winnerl S, Zimmermann B, Peter F et al. Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas[J]. Opt Express, 17, 1571-1576(2009).
[39] Kan K, Yang J, Ogata A et al. Radially polarized terahertz waves from a photoconductive antenna with microstructures[J]. Appl Phys Lett, 102, 221118(2013).
[40] Kaltenecker K J, König-Otto J C, Mittendorff M et al. Gouy phase shift of a tightly focused, radially polarized beam[J]. Optica, 3, 35-41(2016).
[41] Deveikis J, Lloyd-Hughes J. Multi-pixel photoconductive emitters for the controllable generation of azimuthal and radial terahertz beams[J]. Opt Express, 30, 43293-43300(2022).
[42] Mou S, D’Arco A, Tomarchio L et al. Simultaneous elliptically and radially polarized THz from one-color laser-induced plasma filament[J]. New J Phys, 23, 063048(2021).
[43] Han B N, Chen Y P, Xia T H et al. Measurement and control of radially polarized THz radiation from DC-biased laser plasma filaments in air[J]. Sensors, 22, 5231(2022).
[44] Wang L Z, Chen Y P, Zhang G W et al. Tunable high-field terahertz radiation from plasma channels[J]. Laser Photonics Rev, 17, 2200627(2023).
[45] Nikolaeva I A, Shipilo D E, Panov N A et al. Terahertz beam with radial or orthogonal to laser polarization from a single-color femtosecond filament[J]. Opt Express, 31, 41406-41419(2023).
[46] Jana K, Mi Y H, Møller S H et al. Quantum control of flying doughnut terahertz pulses[J]. Sci Adv, 10, eadl1803(2024).
[47] Pettine J, Padmanabhan P, Shi T et al. Light-driven nanoscale vectorial currents[J]. Nature, 626, 984-989(2024).
[48] Beaurepaire E, Merle J C, Daunois A et al. Ultrafast spin dynamics in ferromagnetic nickel[J]. Phys Rev Lett, 76, 4250-4253(1996).
[49] Beaurepaire E, Turner G M, Harrel S M et al. Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses[J]. Appl Phys Lett, 84, 3465-3467(2004).
[50] Taira Y, Kuroda R, Kumaki M et al. Observation of radially polarized terahertz radiation generated by a sub-picosecond electron beam[J]. Vib Spectrosc, 75, 162-168(2014).
[51] Jin Z, Zhuo H B, Nakazawa T et al. Highly efficient terahertz radiation from a thin foil irradiated by a high-contrast laser pulse[J]. Phys Rev E, 94, 033206(2016).
[52] Schulz D, Schwager B, Berakdar J. Nanostructured spintronic emitters for polarization-textured and chiral broadband THz fields[J]. ACS Photonics, 9, 1248-1255(2022).
[53] Chang G Q, Divin C J, Liu C H et al. Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification[J]. Opt Lett, 32, 433-435(2007).
[54] Imai R, Kanda N, Higuchi T et al. Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry[J]. Opt Express, 20, 21896-21904(2012).
[55] Zheng Z, Kanda N, Konishi K et al. Efficient coupling of propagating broadband terahertz radial beams to metal wires[J]. Opt Express, 21, 10642-10650(2013).
[56] Sato M, Higuchi T, Kanda N et al. Terahertz polarization pulse shaping with arbitrary field control[J]. Nat Photonics, 7, 724-731(2013).
[57] Gaborit G, Biciunas A, Bernier M et al. Emitting and receiving terahertz vectorial antennas based on cubic electro-optic crystals[J]. IEEE Trans Terahertz Sci Technol, 5, 828-835(2015).
[58] Feng X, Wang Q W, Lu Y C et al. Direct emission of broadband terahertz cylindrical vector Bessel beam[J]. Appl Phys Lett, 119, 221110(2021).
[59] Mou S, D’Arco A, Tomarchio L et al. Generation of terahertz vector beam bearing tailored topological charge[J]. APL Photonics, 8, 036103(2023).
[60] Iwase H, Ohno S. Direct generation of a terahertz vector beam from a ZnTe crystal excited by a focused circular polarized pulse[J]. Opt Express, 31, 26923-26934(2023).
[61] Kröll J, Darmo J, Dhillon S S et al. Phase-resolved measurements of stimulated emission in a laser[J]. Nature, 449, 698-701(2007).
[62] Jukam N, Dhillon S, Zhao Z Y et al. Gain measurements of THz quantum cascade lasers using THz time-domain spectroscopy[J]. IEEE J Sel Top Quantum Electron, 14, 436-442(2008).
[63] Jukam N, Dhillon S S, Oustinov D et al. Investigation of spectral gain narrowing in quantum cascade lasers using terahertz time domain spectroscopy[J]. Appl Phys Lett, 93, 101115(2008).
[64] Jukam N, Dhillon S S, Oustinov D et al. Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers[J]. Appl Phys Lett, 94, 251108(2009).
[65] Jukam N, Dhillon S S, Oustinov D et al. Terahertz amplifier based on gain switching in a quantum cascade laser[J]. Nat Photonics, 3, 715-719(2009).
[66] Oustinov D, Jukam N, Rungsawang R et al. Phase seeding of a terahertz quantum cascade laser[J]. Nat Commun, 1, 69(2010).
[67] Han S, Chua Y, Zeng Y Q et al. Photonic Majorana quantum cascade laser with polarization-winding emission[J]. Nat Commun, 14, 707(2023).
[68] Han S, Cui J Y, Chua Y et al. Electrically-pumped compact topological bulk lasers driven by band-inverted bound states in the continuum[J]. Light Sci Appl, 12, 145(2023).
[69] Cui J Y, Chua Y, Han S et al. Single‐mode electrically pumped terahertz laser in an ultracompact cavity via merging bound states in the continuum[J]. Laser Photonics Rev, 17, 2300350(2023).
[70] Petrov N V, Sokolenko B, Kulya M S et al. Design of broadband terahertz vector and vortex beams: I. Review of materials and components[J]. Light Adv Manuf, 3, 640-652(2022).
[71] Minasyan A, Trovato C, Degert J et al. Geometric phase shaping of terahertz vortex beams[J]. Opt Lett, 42, 41-44(2017).
[72] Hernandez-Serrano A I, Castro-Camus E, Lopez-Mago D. q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing[J]. J Infrared Millim Terahertz Waves, 38, 938-944(2017).
[73] Dong X P, Cheng J R, Fan F et al. Sub-terahertz wideband vector beam generator based on superwavelength lattice dielectric grating[J]. Optik, 193, 162991(2019).
[74] Koral C, Mazaheri Z, Andreone A. THz multi-mode Q-plate with a fixed rate of change of the optical axis using form birefringence[J]. Micromachines, 13, 796(2022).
[75] Ke L, Zhang S M, Li C X et al. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electron Eng, 50, 230117(2023).
[76] Guo Y H, Pu M B, Zhao Z Y et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 3, 2022-2029(2016).
[77] Zhang F, Pu M B, Luo J et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electron Eng, 44, 319-325(2017).
[78] Mueller J P B, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 118, 113901(2017).
[79] Devlin R C, Ambrosio A, Rubin N A et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 358, 896-901(2017).
[80] Guo Y H, Zhang S C, Pu M B et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation[J]. Light Sci Appl, 10, 63(2021).
[81] Zhang F, Guo Y H, Pu M B et al. Metasurfaces enabled by asymmetric photonic spin-orbit interactions[J]. Opto-Electron Eng, 47, 200366(2020).
[82] Papakostas A, Potts A, Bagnall D M et al. Optical manifestations of planar chirality[J]. Phys Rev Lett, 90, 107404(2003).
[83] Kang M, Chen J, Wang X L et al. Twisted vector field from an inhomogeneous and anisotropic metamaterial[J]. J Opt Soc Am B, 29, 572-576(2012).
[84] Xie Z W, He J W, Wang X K et al. Generation of terahertz vector beams with a concentric ring metal grating and photo-generated carriers[J]. Opt Lett, 40, 359-362(2015).
[85] Guo J Y, Wang X K, He J W et al. Generation of radial polarized Lorentz beam with single layer metasurface[J]. Adv Opt Mater, 6, 1700925(2018).
[86] Xu Y H, Zhang H F, Li Q et al. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control[J]. Nanophotonics, 9, 3393-3402(2020).
[87] Zhou H X, Cheng J R, Fan F et al. Ultrathin freestanding terahertz vector beam generators with free phase modulation[J]. Opt Express, 29, 1384-1395(2021).
[88] Wu T, Zhang X Q, Xu Q et al. Dielectric metasurfaces for complete control of phase, amplitude, and polarization[J]. Adv Opt Mater, 10, 2101223(2022).
[89] Wu Q, Fan W H, Qin C. Generation and superposition of perfect vortex beams in terahertz region via single-layer all-dielectric metasurface[J]. Nanomaterials, 12, 3010(2022).
[90] Li Q S, Cai X D, Liu T et al. Gate-tuned graphene meta-devices for dynamically controlling terahertz wavefronts[J]. Nanophotonics, 11, 2085-2096(2022).
[91] Zhao H, Wang X K, Liu S T et al. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band[J]. Opto-Electron Adv, 6, 220012(2023).
[92] Li H, Zheng C L, Liu J Y et al. Binary encoding-inspired generation of vector vortex beams[J]. Sci China Phys Mech Astron, 66, 254212(2023).
[93] Ke L, Li C X, Zhang S M et al. Tight focusing field of cylindrical vector beams based on cascaded low-refractive index metamaterials[J]. Nanophotonics, 12, 3563-3578(2023).
[94] Zheng C L, Li J, Liu J Y et al. Creating longitudinally varying vector vortex beams with an all-dielectric metasurface[J]. Laser Photonics Rev, 16, 2200236(2022).
[95] Li J, Li J T, Yue Z et al. Structured vector field manipulation of terahertz wave along the propagation direction based on dielectric metasurfaces[J]. Laser Photonics Rev, 16, 2200325(2022).
[96] Li H, Duan S X, Zheng C L et al. Manipulation of longitudinally inhomogeneous polarization states empowered by all-silicon metasurfaces[J]. Adv Opt Mater, 11, 2202461(2023).
[97] Li H, Duan S X, Zheng C L et al. Longitudinal manipulation of scalar to vector vortex beams evolution empowered by all-silicon metasurfaces[J]. Adv Opt Mater, 11, 2301368(2023).
[98] Luo L, Liu X, Duan S X et al. Dual channel transformation of scalar and vector terahertz beams along the optical path based on dielectric metasurface[J]. Nanophotonics, 12, 3839-3848(2023).
[99] Hu S S, Wei L, Long Y et al. Longitudinal polarization manipulation based on all-dielectric terahertz metasurfaces[J]. Opt Express, 32, 6963-6976(2024).
[100] He X Y, Bao H L, Zhang F et al. Longitudinally continuous varying high-order cylindrical vector fields enabled by spin-decoupled metasurfaces[J]. Nanophotonics, 13, 1657-1664(2024).
[101] Hsieh C F, Pan R P, Tang T T et al. Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate[J]. Opt Lett, 31, 1112-1114(2006).
[102] Piccirillo B, D'Ambrosio V, Slussarenko S et al. Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate[J]. Appl Phys Lett, 97, 241104(2010).
[103] Yang C S, Tang T T, Pan R P et al. Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment[J]. Appl Phys Lett, 104, 141106(2014).
[104] Chen P, Wei B Y, Ji W et al. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings[J]. Photonics Res, 3, 133-139(2015).
[105] Sasaki T, Okuyama H, Sakamoto M et al. Optical control of polarized terahertz waves using dye-doped nematic liquid crystals[J]. AIP Adv, 8, 115326(2018).
[106] Vieweg N, Jansen C, Shakfa M K et al. Molecular properties of liquid crystals in the terahertz frequency range[J]. Opt Express, 18, 6097-6107(2010).
[107] Wang L, Lin X W, Hu W et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes[J]. Light Sci Appl, 4, e253(2015).
[108] Hsieh C F, Yang C S, Shih F C et al. Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate[J]. Opt Express, 27, 9933-9940(2019).
[109] Wang L, Ge S J, Hu W et al. Tunable reflective liquid crystal terahertz waveplates[J]. Opt Mater Express, 7, 2023-2029(2017).
[110] Zhang X, Fan F, Zhang C Y et al. Tunable terahertz phase shifter based on dielectric artificial birefringence grating filled with polymer dispersed liquid crystal[J]. Opt Mater Express, 10, 282-292(2020).
[111] Shen Z X, Tang M J, Chen P et al. Planar terahertz photonics mediated by liquid crystal polymers[J]. Adv Opt Mater, 8, 1902124(2020).
[112] Shen Z X, Zhou S H, Ge S J et al. Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations[J]. Opt Lett, 43, 4695-4698(2018).
[113] Ge S J, Chen P, Shen Z X et al. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal[J]. Opt Express, 25, 12349-12356(2017).
[114] Ge S J, Shen Z X, Chen P et al. Generating, separating and polarizing terahertz vortex beams via liquid crystals with gradient-rotation directors[J]. Crystals, 7, 314(2017).
[115] Shen Y C, Shen Z X, Zhao G Z et al. Photopatterned liquid crystal mediated terahertz Bessel vortex beam generator [Invited][J]. Chin Opt Lett, 18, 080003(2020).
[116] Savo S, Shrekenhamer D, Padilla W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications[J]. Adv Opt Mater, 2, 275-279(2014).
[117] Liu C X, Yang F, Fu X J et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals[J]. Adv Opt Mater, 9, 2100932(2021).
[118] Buchnev O, Podoliak N, Kaltenecker K et al. Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications[J]. ACS Photonics, 7, 3199-3206(2020).
[119] Tao S N, Shen Z X, Yu H G et al. Transflective spatial terahertz wave modulator[J]. Opt Lett, 47, 1650-1653(2022).
[120] Liu S, Xu F, Zhan J L et al. Terahertz liquid crystal programmable metasurface based on resonance switching[J]. Opt Lett, 47, 1891-1894(2022).
[121] Li W L, Hu X M, Wu J B et al. Dual-color terahertz spatial light modulator for single-pixel imaging[J]. Light Sci Appl, 11, 191(2022).
[122] Wang S, Guo H B, Chen B W et al. Electrically active terahertz liquid-crystal metasurface for polarization vortex beam switching[J]. Laser Photonics Rev, 2301301(2024).
[123] Wakayama T, Higashiguchi T, Oikawa H et al. Determination of the polarization states of an arbitrary polarized terahertz beam: vectorial vortex analysis[J]. Sci Rep, 5, 9416(2015).
[124] Wakayama T, Higashiguchi T, Sakaue K et al. Demonstration of a terahertz pure vector beam by tailoring geometric phase[J]. Sci Rep, 8, 8690(2018).
[125] Niwa H, Yoshikawa N, Kawaguchi M et al. Switchable generation of azimuthally- and radially-polarized terahertz beams from a spintronic terahertz emitter[J]. Opt Express, 29, 13331-13343(2021).
[126] Grosjean T, Baida F, Adam R et al. Linear to radial polarization conversion in the THz domain using a passive system[J]. Opt Express, 16, 18895-18909(2008).
[127] Fan J Y, Zhang L, Wu Z Y et al. Simultaneous and independent control of phase and polarization in terahertz band for functional integration of multiple devices[J]. Opt Laser Technol, 151, 108064(2022).
[128] Zeng C, Lu H, Mao D et al. Graphene-empowered dynamic metasurfaces and metadevices[J]. Opto-Electron Adv, 5, 200098(2022).
[129] Zhang S J, Cao T, Tian Z. Progress on reconfigurable terahertz metasurface devices based on sulfide phase change materials[J]. Opto-Electron Eng, 50, 230142(2023).
[130] Guan S N, Cheng J R, Chang S J. Recent progress of terahertz spatial light modulators: materials, principles and applications[J]. Micromachines, 13, 1637(2022).
[131] Yu H G, Wang H C, Wang Q G et al. Liquid crystal-tuned planar optics in terahertz range[J]. Appl Sci, 13, 1428(2023).
Get Citation
Copy Citation Text
Hao Hu, Xiaoxue Hu, Liping Gong, Sixing Xi, Xiaolei Wang. Research progress of terahertz vector beams[J]. Opto-Electronic Engineering, 2024, 51(8): 240071
Category:
Received: Mar. 25, 2024
Accepted: May. 16, 2024
Published Online: Nov. 12, 2024
The Author Email: Xiaolei Wang (王晓雷)