The Journal of Light Scattering, Volume. 37, Issue 2, 180(2025)
Theoretical study on the backscattering characteristics of visible solar spectrum of triangular prism Au-Ge Janus nanoparticles
[1] [1] Petryayeva E, Krull U J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review[J]. Analytica Chimica Acta, 2011, 706(1): 8-24.
[2] [2] Ammari H, Millien P, Ruiz M, et al. Mathematical Analysis of Plasmonic Nanoparticles: The Scalar Case[J]. Archive for Rational Mechanics and Analysis, 2017, 224(2): 597-658.
[4] [4] Sengul A B, Asmatulu E. Toxicity of metal and metal oxide nanoparticles: a review[J]. Environmental Chemistry Letters, 2020, 18(5): 1659-1683.
[5] [5] Yuan J, Liu L, Gan T, et al. Continuous Flow-Electrochemical Coupling Technology for Metal Nanoparticle Synthesis: Applications for Catalysis[J]. ACS Applied Nano Materials, 2024, 7(3): 2796-2805.
[6] [6] Sants-Miguel V, Arias-Estvez M, Rodrguez-Seijo A, et al. Use of metal nanoparticles in agriculture. A review on the effects on plant germination[J]. Environmental Pollution, 2023, 334: 122222
[7] [7] Saravanan A, Kumar P S, Karishma S, et al. A review on biosynthesis of metal nanoparticles and its environmental applications[J]. Chemosphere, 2021, 264: 128580.
[9] [9] Stavarache I, Teodorescu V S, Prepelita P, et al. Ge nanoparticles in SiO2 for near infrared photodetectors with high performance[J]. Scientific Reports, 2019, 9(1): 10286.
[10] [10] Ma C, Yan J, Huang Y, et al. Directional Scattering in a Germanium Nanosphere in the Visible Light Region[J]. Advanced Optical Materials, 2017, 5(24): 1700761.
[11] [11] Behrle R, Smoliner J, Wind L, et al. Bias-tunable temperature coefficient of resistance in Ge transistors[J]. Applied Physics Letters, 2024, 124(9): 093510.
[12] [12] Carolan D. Recent advances in germanium nanocrystals: Synthesis, optical properties and applications[J]. Progress in Materials Science, 2017, 90: 128-158.
[13] [13] Amendola V, Pilot R, Frasconi M, et al. Surface plasmon resonance in gold nanoparticles: a review[J]. Journal of Physics: Condensed Matter, 2017, 29(20): 203002.
[15] [15] Yan L L, Yang X B, Zhang Y Q, et al. Porous Janus materials with unique asymmetries and functionality[J]. Materials Today, 2021, 51: 626-647.
[16] [16] de Gennes P G. Soft Matter (Nobel lecture)[J]. Angewandte Chemie International Edition in English, 1992, 31(7): 842-845.
[17] [17] Yi Y, Sanchez L, Gao Y, et al. Janus particles for biological imaging and sensing[J]. The Analyst, 2016, 141(12): 3526-3539.
[18] [18] Wang Y H, Zhao P X, Zhang SH, et al. Application of Janus Particles in Point-of-Care Testing[J]. Biosensors, 2022, 12(9): 689.
[19] [19] Alam M, Waheed H S, Ullah H, et al. Optoelectronics properties of JanusSnSSe monolayer for solar cells applications[J]. Physica B: Condensed Matter, 2022, 625: 413487.
[20] [20] Vu T V, Hoi B D, Kartamyshev A I, et al. Induced out-of-plane piezoelectricity and giant Rashba spin splitting in Janus WSiZ3H (Z = N, P, As) monolayers toward next-generation electronic devices[J]. Journal of Applied Physics, 2024, 135(7): 074301.
[22] [22] Logsdail A J, Johnston R L. Predicting the Optical Properties of Core-Shell and Janus Segregated Au-M Nanoparticles (M = Ag, Pd)[J]. Journal of Physical Chemistry C, 2012, 116(44): 23616-23628.
[24] [24] Teixeira F L, Sarris C D, Zhang Y, et al. Finite-difference time-domain methods[J]. Nature Reviews Methods Primers, 2023, 3(1): 75.
[25] [25] Draine B T, Flatau P J. Discrete-dipole approximation for periodic targets: theory and tests[J]. Journal of the Optical Society of America. A, Optics, image science, and vision, 2008, 25(11): 2693-2703.
[26] [26] Yurkin M A, Hoekstra A G. The discrete dipole approximation: an overview and recent developments[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 106(1): 558-589.
[28] [28] Grand J, Le Ru E C. Practical Implementation of Accurate Finite-Element Calculations for Electromagnetic Scattering by Nanoparticles[J]. Plasmonics, 2020, 15(1): 109-121.
[30] [30] Aspnes D E, Studna A A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV[J]. Physical Review B. 1983, 27(2): 985-1009.
[31] [31] Johnson P B, Christy R W. Optical Constants of the Noble Metals[J]. Physical Review B. 1972, 6(12): 4370-4379.
Get Citation
Copy Citation Text
HE Yiping, RUAN Pei, YANG Qian, LUO Daobin. Theoretical study on the backscattering characteristics of visible solar spectrum of triangular prism Au-Ge Janus nanoparticles[J]. The Journal of Light Scattering, 2025, 37(2): 180
Category:
Received: Jul. 1, 2024
Accepted: Jul. 31, 2025
Published Online: Jul. 31, 2025
The Author Email: LUO Daobin (luodaobin@sust.edu.cn)