Infrared and Laser Engineering, Volume. 51, Issue 10, 20211105(2022)

Effect of buffer gas on gas temperature distribution and output characteristics of flowing-gas circulation cesium vapor laser

Haohua Wan1,2, Yang He1, Yanhui Ji1,2, and Fei Chen1
Author Affiliations
  • 1State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(10)
    Diagram of cesium atomic energy level transition
    Schematic of diode end-pumped transverse flow Cs-DPAL
    Relationship between temperature distribution and buffer gas pressure in vapor cell. (a), (c) and (e) correspond to 400 torr, 700 torr and 1000 torr methane pressures, respectively; (b), (d) and (f) correspond to 400 torr, 700 torr and 1000 torr ethane pressures, respectively
    (a) Curves of the maximum temperature in vapor cell versus buffer gas pressure; (b) Curves of output laser power versus buffer gas pressure
    Relationship between temperature distribution and buffer gas pressure in vapor cell using mixed gas as buffer gas. (a) 700 torr methane and 400 torr helium; (b) 700 torr methane and 400 torr argon; (c) 700 torr methane and 700 torr helium; (d) 700 torr methane and 700 torr argon;(e) 700 torr ethane and 400 torr helium; (f) 700 torr ethane and 400 torr argon; (g) 700 torr ethane and 700 torr helium; (g) 700 torr ethane and 700 torr argon
    [in Chinese]
    Curves of maximum temperature versus total gas pressure in vapor cell of various buffer gas. (a) 400 torr alkanes in mixed gases;(b) 700 torr alkanes in mixed gases
    Curves of laser output power versus pressure of helium (a) and argon (b) of various buffer gases
    • Table 1. Parameters of gas flowing diode pumped cesium laser

      View table
      View in Article

      Table 1. Parameters of gas flowing diode pumped cesium laser

      ParametersValueParametersValue
      Central wavelength of pump light/nm852.3Waist radius of pump light/mm1
      Pump light linewidth/GHz70Pump light transmittance of M1 and M2100%
      Pump light transmittance of M399%Laser reflectivity of M450%
      Distance between waist of pump light and central of vapor cell/mm0Sidewall temperature of vapor cell/℃100
      Distance between vapor cell and M3/mm50Distance between vapor cell and M4/mm50
      Gain length of vapor cell/mm20Velocity of flowing gas/m·s−120
    • Table 2. Molar heat capacity, thermal conductivity and viscosity of buffer gases

      View table
      View in Article

      Table 2. Molar heat capacity, thermal conductivity and viscosity of buffer gases

      Buffer gasesMolar heat capacity/J·mol−1·K−1Thermal conductivity/ W·m−1·K−1Viscosity/ Pa·s−1
      Ethane72.0274.464×10−21.353×10−5
      Methane43.5505.906×10−21.566×10−5
      Helium20.7852.066×10−12.636×10−5
      Argon20.8102.451×10−23.138×10−5
    Tools

    Get Citation

    Copy Citation Text

    Haohua Wan, Yang He, Yanhui Ji, Fei Chen. Effect of buffer gas on gas temperature distribution and output characteristics of flowing-gas circulation cesium vapor laser[J]. Infrared and Laser Engineering, 2022, 51(10): 20211105

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers & Laser optics

    Received: Dec. 23, 2021

    Accepted: Feb. 16, 2022

    Published Online: Jan. 6, 2023

    The Author Email:

    DOI:10.3788/IRLA20211105

    Topics