Infrared and Laser Engineering, Volume. 51, Issue 10, 20211105(2022)
Effect of buffer gas on gas temperature distribution and output characteristics of flowing-gas circulation cesium vapor laser
Fig. 3. Relationship between temperature distribution and buffer gas pressure in vapor cell. (a), (c) and (e) correspond to 400 torr, 700 torr and 1000 torr methane pressures, respectively; (b), (d) and (f) correspond to 400 torr, 700 torr and 1000 torr ethane pressures, respectively
Fig. 4. (a) Curves of the maximum temperature in vapor cell versus buffer gas pressure; (b) Curves of output laser power versus buffer gas pressure
Fig. 5. Relationship between temperature distribution and buffer gas pressure in vapor cell using mixed gas as buffer gas. (a) 700 torr methane and 400 torr helium; (b) 700 torr methane and 400 torr argon; (c) 700 torr methane and 700 torr helium; (d) 700 torr methane and 700 torr argon;(e) 700 torr ethane and 400 torr helium; (f) 700 torr ethane and 400 torr argon; (g) 700 torr ethane and 700 torr helium; (g) 700 torr ethane and 700 torr argon
Fig. 6. Curves of maximum temperature versus total gas pressure in vapor cell of various buffer gas. (a) 400 torr alkanes in mixed gases;(b) 700 torr alkanes in mixed gases
Fig. 7. Curves of laser output power versus pressure of helium (a) and argon (b) of various buffer gases
|
|
Get Citation
Copy Citation Text
Haohua Wan, Yang He, Yanhui Ji, Fei Chen. Effect of buffer gas on gas temperature distribution and output characteristics of flowing-gas circulation cesium vapor laser[J]. Infrared and Laser Engineering, 2022, 51(10): 20211105
Category: Lasers & Laser optics
Received: Dec. 23, 2021
Accepted: Feb. 16, 2022
Published Online: Jan. 6, 2023
The Author Email: