Journal of Shanghai Maritime University, Volume. 46, Issue 2, 23(2025)
Fuel consumption prediction model for sail-assisted ships based on hybrid kernel function ARS-SVR
[1] [1] HU Z H, JIN Y X,HU Q Y,et al. Prediction of fuel consumption for enroute ship based on machine learning[J]. IEEE Access, 2019, 7:119497-119505. DOI:10.1109/ACCESS.2019.2933630.
[2] [2] WANG K, HUA Y,HUANG L Z,et al. A novel GA-LSTM-based prediction method of ship energy usage based on the characteristics analysis of operational data [J]. Energy, 2023, 282:128910. DOI:10.1016/j.energy.2023.128910.
[5] [5] ZHANG X F,MENG Y,LIU Z C,et al. Modified grey wolf optimizer-based support vector regression for ship maneuvering identification with full-scale trial[J]. Journal of Marine Science and Technology, 2022(1):27. DOI:10.1007/s00773-021-00858-2.
[7] [7] LAREF R,LOSON E,SAVA A,et al. On the optimization of the support vector machine regression hyperparameters setting for gas sensors array applications[J]. Chemometrics and Intelligent Laboratory Systems, 2019, 184:23-27. DOI:10.1016/j.chemolab.2018.11.011.
[8] [8] SU Z Q,TANG B P,LIU Z R, et al.Multi-fault diagnosis for rotating machinery based on orthogonal supervised linear local tangent space alignment and least square support vector machine[J]. Neurocomputing, 2015, 157:208-222. DOI:10.1016/j.neucom.2015.01.016.
[9] [9] FANG Y D,ZHAN Z F,YANG J Q,et al. A mixed-kernel-based support vector regression model for automotive body design optimization under uncertainty[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B:Mechanical Engineering, 2017 , 3(4):041008. DOI:10.1115/1.4036990.
[10] [10] CHENG K, LU Z Z,WEI Y H,et al. Mixed kernel function support vector regression for global sensitivity analysis[J]. Mechanical Systems and Signal Processing, 2017,96:201-214. DOI:10.1016/j.ymssp.2017.04.014.
[13] [13] SMITS G F, JORDAAN E M. Improved SVM regression using mixtures of kernels[C]//Proceedings of the 2002 International Joint Conference on Neural Networks. IEEE, 2002, 3:2785-2790. DOI:10.1109/IJCNN.2002.1007589.
[16] [16] JI Y J,XU K P,ZENG P,et al. GA-SVR algorithm for improving forest above ground biomass estimation using SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:6585-6595. DOI:10.1109/JSTARS.2021.3089151.
[18] [18] DAI J F, FU L H. A wind speed forecasting model using nonlinear auto-regressive model optimized by the hybrid chaos-cloud salp swarm algorithm[J]. Energy, 2024, 298:131332. DOI:10.1016/j.energy.2024.131332.
[19] [19] RAJ R E,SRIDHAR S. Grey wolf optimizer algorithm for the performance predetermination of variable speed self-excited induction generators [J]. COMPEL:The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2022, 41 (1):319-333. DOI: 10.1108/COMPEL-06-2021-0197.
Get Citation
Copy Citation Text
LIU Yize, MA Ranqi, RUAN Zhang, HUANG Lianzhong. Fuel consumption prediction model for sail-assisted ships based on hybrid kernel function ARS-SVR[J]. Journal of Shanghai Maritime University, 2025, 46(2): 23
Received: Apr. 26, 2024
Accepted: Aug. 22, 2025
Published Online: Aug. 22, 2025
The Author Email: HUANG Lianzhong (lzhuang@dlmu.edu.cn)