Acta Photonica Sinica, Volume. 52, Issue 9, 0902001(2023)
Microwave Electric Fields Measurement with One-dimensional Standing-wave Fields Based on Rydberg Atoms
[1] BOLLER K J, IMAMOGLU A, HARRIS S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 66, 2593-2596(1991).
[2] FLEISCHHAUER M, KEITEL C H, SCULLY M O et al. Resonantly enhanced refractive index without absorption via atomic coherence[J]. Physical Review A, 46, 1468(1992).
[3] PHILLIPS D F, FLEISCHHAUER A, MAIR A et al. Storage of light in atomic vapor[J]. Physical Review Letters, 86, 783(2000).
[4] NOVIKOVA I, GORSHKOV A V, PHILLIPS D F et al. Optimization of slow and stored light in atomic vapor[C], 6482, 64820M(2007).
[5] MATTLE K, WEINFURTER H, KWIAT P G et al. Dense coding in experimental quantum communication[J]. Physical Review Letters, 76, 4656-4659(1996).
[6] JING M, HU Y, MA J et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 16, 911-915(2020).
[7] FOLTYNOWICZ A, MASLOWSKI P, FLEISHER A et al. Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide[J]. Applied Physics B, 110, 163-175(2012).
[8] KHODABAKHSH A, JOHANSSON A C, FOLTYNOWICZ A et al. Noise-immune cavity-enhanced optical frequency comb spectroscopy: a sensitive technique for high-resolution broadband molecular detection[J]. Applied Physics, 119, 87-96(2015).
[9] ANDERSON D A, SAPIRO R E, RAITHEL G. An atomic receiver for AM and FM radio communication[J]. IEEE Transactions on Antennas and Propagation, 69, 2455-2462(2020).
[10] HOLLOWAY C L, SIMONS M T, KAUTZ M D et al. A quantum-based power standard: Using Rydberg atoms for a SI-traceable radio-frequency power measurement technique in rectangular waveguides[J]. Applied Physics Letters, 113, 094-101(2018).
[11] SIMONS M T, HADDAB A H, GORDON J A et al. Embedding a Rydberg atom-based sensor into an antenna for phase and amplitude detection of radio-frequency fields and modulated signals[J]. IEEE Access, 7, 164975-164985(2019).
[12] COX K C, MEYER D H, FATEMI F K et al. Quantum-limited atomic receiver in the electrically small regime[J]. Physical Review Letters, 121, 110502(2018).
[13] DEB A B, KJAERGAARD N. Radio-over-fiber using an optical antenna based on Rydberg states of atoms[J]. Applied Physics Letters, 112, 211106(2018).
[14] MEYER D H, COX K C, FATEMI F K et al. Digital communication with Rydberg atoms & amplitude-modulated microwave fields[J]. Applied Physics Letters, 112, 211108(2018).
[15] IDO T, KATORI H. Recoil-free spectroscopy of neutral Sr atoms in the lamb-dicke regime[J]. Physical Review Letters, 91, 053001(2003).
[16] FIELD J E, HAHN K H, HARRIS S E. Observation of electromagnetically induced transparency in collisionally broadened lead vapor[J]. Physical Review Letters, 67, 3062-3065(1991).
[17] ZHAO Y, WU C, HAM B S et al. Microwave induced transparency in Ruby[J]. Physical Review Letters, 79, 641-644(1997).
[18] FRIEDLER I, PETROSYAN D, FLEISCHHAUER M et al. Long-range interactions and entanglement of slow single-photon pulses[J]. Physical Review A, 72, 043803(2005).
[19] LUND A P, RALPH T C, HASELGROVE H L. Fault-tolerant linear optical quantum computing with small-amplitude coherent states[J]. Physical Review Letters, 100, 030503(2008).
[20] ARAM M H, KHORASANI S. Scalable cavity quantum electrodynamics system for quantum computing[J]. Journal of Modern Physics, 6, 1467-1477(2015).
[21] PITSIOS I, BANCHI L, RAB A S et al. Photonic simulation of entanglement growth after a spin chain quench[J]. Nature Communications, 8, 1569(2017).
[22] NAGEL A, GRAF L, NAUMOV A et al. Experimental realization of coherent dark-state magnetometers[J]. Europhysics Letters, 44, 31-36(1998).
[23] KOMINIS I K, KORNACK T W, ALLRED J C et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 422, 596-599(2003).
[24] SEDLACEK J A, SCHWETTMANN A, KÜBLER H et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 8, 819-824(2012).
[25] MOHAPATRA A K, JACKSON T R, ADAMS C S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency[J]. Physical Review Letters, 98, 113003(2006).
[26] JM M S, JONES M. Spectroscopy of strontium Rydberg states using electromagnetically induced transparency[J]. Journal of Physics B Atomic Molecular & Optical Physics, 40, F319-F325(2007).
[27] ZHANG Z, CHE J, DAN Z et al. Eight-wave mixing process in a Rydberg-dressing atomic ensemble[J]. Optics Express, 23, 13814(2015).
[28] VAN WIJNGAARDEN W A, HESSELS E A, LI J et al. Precision measurement of Stark shifts for 6P3/2→nS1/2 n=10-13 transitions in cesium[J]. Physical Review A, 49, R2220-R2223(1994).
[29] YANG Baodong, GAO Jing, WANG Jie et al. Multiple electromagnetically-induced transparency of hyperfine levels in cesium 6S1/2 -6P3/2 -8S1/2 ladder-type system[J]. Acta Physica Sinica, 60, 114207(2011).
[30] SIMONS M T, GORDON J A, HOLLOWAY C L et al. Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied Physics Letters, 108, 174101(2016).
Get Citation
Copy Citation Text
Ke LI, Jianfei TIAN, Hao ZHANG, Mingyong JING, Linjie ZHANG. Microwave Electric Fields Measurement with One-dimensional Standing-wave Fields Based on Rydberg Atoms[J]. Acta Photonica Sinica, 2023, 52(9): 0902001
Category: Atomic and Molecular Physics
Received: Mar. 8, 2023
Accepted: Apr. 19, 2023
Published Online: Oct. 24, 2023
The Author Email: Linjie ZHANG (zlj@sxu.edu.cn)