Laser & Optoelectronics Progress, Volume. 58, Issue 24, 2400003(2021)

Research Progress of Brain Tumor Segmentation Based on Convolutional Neural Network

Zhiwei Li1, Hui Cao1, Feng Yang1, and Bin Cao2、*
Author Affiliations
  • 1School of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
  • 2Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
  • show less
    Figures & Tables(5)
    A network structure of FCN for brain tumor segmentation[26]
    Structure of U-Net network[35]
    • Table 1. Dice coefficients of different dimensions CNN in brain tumor images segmentation

      View table

      Table 1. Dice coefficients of different dimensions CNN in brain tumor images segmentation

      MethodCategoryDatasetDice_WTDice_TCDice_ET
      Havaei172DBraTS20150.790.580.69
      Zikic142DBraTS20130.840.740.69
      Pereira162DBraTS20150.790.650.75
      Tseng172D to 3DBraTS20150.850.680.69
      Urban143DBraTS20130.860.750.73
      Kamnitsal163DBraTS20150.900.760.73
      Casamitjana163DBraTS20150.920.840.77
      Chen183DBraTS20170.720.830.81
      Qamar183DBraTS20180.870.810.84
      Feng Bowen203DBraTS20180.900.730.71
      Mlynarski182D and 3DBraTS20170.920.880.85
    • Table 2. Dice coefficients of different dimensions FCN in brain tumor images segmentation

      View table

      Table 2. Dice coefficients of different dimensions FCN in brain tumor images segmentation

      MethodCategoryDatasetDice_WTDice_TCDice_ET
      Long152D FCNBraTS20180.830.730.63
      Shen172D FCNBraTS20130.860.730.73
      Shen17’2D FCNBraTS20130.870.820.75
      Zhao172D FCNBraTS20130.810.650.60
      Zhao17’2D FCNBraTS20170.880.760.76
      Wang172D to 3D FCNBraTS20170.790.870.77
      Puch193D FCNBraTS20180.900.800.75
      Ronneberger152D U-NetBraTS20180.840.750.65
      Dong172D U-NetBraTS20180.880.870.81
      Shaikh172D U-NetBraTS20170.830.650.65
      Liu182D U-NetBraTS20150.870.620.68
      Isensee182D U-NetBraTS20170.860.780.65
      Kong182D U-NetBraTS20170.920.800.76
      Ai Lingmei202D U-NetBraTS20180.910.800.79
      Chu Jinghui192.5D U-NetBraTS20180.910.850.81
      Menze173D U-NetBraTS20170.880.760.72
      Beers173D U-NetBraTS20170.880.730.73
      Feng183D U-NetBraTS20180.910.840.79
      He Cheng’en203D U-NetBraTS20170.900.800.77
    • Table 3. Dice coefficients of partial DCNN models in brain tumor images segmentation

      View table

      Table 3. Dice coefficients of partial DCNN models in brain tumor images segmentation

      MethodCategoryDatasetDice_WTDice_TCDice_ET
      Randhawa16DCNNBraTS20160.870.750.71
      Hussain17DCNNBraTS20130.800.670.85
      Ben Naceur18DCNNBraTS20170.890.760.81
    Tools

    Get Citation

    Copy Citation Text

    Zhiwei Li, Hui Cao, Feng Yang, Bin Cao. Research Progress of Brain Tumor Segmentation Based on Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2400003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Nov. 30, 2020

    Accepted: Feb. 17, 2021

    Published Online: Nov. 24, 2021

    The Author Email: Cao Bin (cb.0412@163.com)

    DOI:10.3788/LOP202158.2400003

    Topics