Acta Optica Sinica, Volume. 44, Issue 10, 1026015(2024)
Chiral Light Field and Its Recent Research Progress in Molecular Chirality Detection (Invited)
[1] Keszthelyi L. Origin of the homochirality of biomolecules[J]. Quarterly Reviews of Biophysics, 28, 473-507(1995).
[2] Franks M E, MacPherson G R, Figg W D. Thalidomide[J]. The Lancet, 363, 1802-1811(2004).
[3] Kamarei F, Vajda P, Gritti F et al. The adsorption of naproxen enantiomers on the chiral stationary phase (R, R)-whelk-O1 under supercritical fluid conditions[J]. Journal of Chromatography A, 1345, 200-206(2014).
[4] Cordato D J, Mather L E, Herkes G K. Stereochemistry in clinical medicine: a neurological perspective[J]. Journal of Clinical Neuroscience, 10, 649-654(2003).
[5] Sekhon B S. Exploiting the power of stereochemistry in drugs: an overview of racemic and enantiopure drugs[J]. Journal of Modern Medicinal Chemistry, 1, 10-36(2013).
[6] Pasteur L. Sur les relations qui peuvent exister entre la forme crystalline, la composition chimique et le sens de la polarization rotatoire[J]. Annales de Chimie et de Physique, 24, 442-459(1848).
[7] Tang Y Q, Cohen A E. Optical chirality and its interaction with matter[J]. Physical Review Letters, 104, 163901(2010).
[8] Forbes K A, Andrews D L. Optical orbital angular momentum: twisted light and chirality[J]. Optics Letters, 43, 435-438(2018).
[9] Ayuso D, Neufeld O, Ordonez A F et al. Synthetic chiral light for efficient control of chiral light-matter interaction[J]. Nature Photonics, 13, 866-871(2019).
[10] Ayuso D, Ordonez A F, Decleva P et al. Enantio-sensitive unidirectional light bending[J]. Nature Communications, 12, 3951(2021).
[11] Ayuso D, Ordonez A F, Ivanov M et al. Ultrafast optical rotation in chiral molecules with ultrashort and tightly focused beams[J]. Optica, 8, 1243-1246(2021).
[12] Ayuso D, Ordonez A F, Smirnova O. Ultrafast chirality: the road to efficient chiral measurements[J]. Physical Chemistry Chemical Physics: PCCP, 24, 26962-26991(2022).
[13] Khokhlova M, Pisanty E, Patchkovskii S et al. Enantiosensitive steering of free-induction decay[J]. Science Advances, 8, eabq1962(2022).
[14] Neufeld O, Hübener H, Rubio A et al. Strong chiral dichroism and enantiopurification in above-threshold ionization with locally chiral light[J]. Physical Review Research, 3, L032006(2021).
[15] Neufeld O, Wengrowicz O, Peleg O et al. Detecting multiple chiral centers in chiral molecules with high harmonic generation[J]. Optics Express, 30, 3729-3740(2022).
[16] Forbes K A. Raman optical activity using twisted photons[J]. Physical Review Letters, 122, 103201(2019).
[17] Forbes K A, Jones G A. Optical vortex dichroism in chiral particles[J]. Physical Review A, 103, 053515(2021).
[18] Cai M R, Ye C, Dong H et al. Enantiodetection of chiral molecules via two-dimensional spectroscopy[J]. Physical Review Letters, 129, 103201(2022).
[19] Ye C, Sun Y F, Li Y et al. Single-shot nondestructive quantum sensing for gaseous samples with hundreds of chiral molecules[J]. The Journal of Physical Chemistry Letters, 14, 6772-6777(2023).
[20] Beaulieu S, Comby A, Descamps D et al. Photoexcitation circular dichroism in chiral molecules[J]. Nature Physics, 14, 484-489(2018).
[21] Neufeld O, Ayuso D, Decleva P et al. Ultrasensitive chiral spectroscopy by dynamical symmetry breaking in high harmonic generation[J]. Physical Review X, 9, 031002(2019).
[22] Govorov A O. Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. application to various geometries[J]. The Journal of Physical Chemistry C, 115, 7914-7923(2011).
[23] Wang R Y, Wang P, Liu Y et al. Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters[J]. The Journal of Physical Chemistry C, 118, 9690-9695(2014).
[24] Wu T, Zhang W X, Wang R Y et al. A giant chiroptical effect caused by the electric quadrupole[J]. Nanoscale, 9, 5110-5118(2017).
[25] Wu T, Ren J, Wang R Y et al. Competition of chiroptical effect caused by nanostructure and chiral molecules[J]. The Journal of Physical Chemistry C, 118, 20529-20537(2014).
[26] Wu T, Zhang X H, Wang R Y et al. Strongly enhanced Raman optical activity in molecules by magnetic response of nanoparticles[J]. The Journal of Physical Chemistry C, 120, 14795-14804(2016).
[27] Lipkin D M. Existence of a new conservation law in electromagnetic theory[J]. Journal of Mathematical Physics, 5, 696-700(1964).
[28] Rui G H, Zhan Q W. Nanophotonic methods for chiral sensing and characterization (invited)[J]. Acta Photonica Sinica, 51, 0551301(2022).
[29] Harris R A. On the optical rotary dispersion of polymers[J]. The Journal of Chemical Physics, 43, 959-970(1965).
[30] Valev V K, Baumberg J J, Sibilia C et al. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook[J]. Advanced Materials, 25, 2517-2534(2013).
[31] Liu Y, Hou S S, Zhang W X et al. Tunable manipulation of enantiomers by vector exceptional points[J]. The Journal of Physical Chemistry C, 126, 3127-3133(2022).
[32] Liu Y, Zhang W X, He L et al. All-optical separation of chiral nanoparticles on silicon-based microfluidic chips with vector exceptional points[J]. APL Photonics, 8, 036112(2023).
[33] Zhang W X, Wu T, Wang R Y et al. Surface-enhanced circular dichroism of oriented chiral molecules by plasmonic nanostructures[J]. The Journal of Physical Chemistry C, 121, 666-675(2017).
[34] Zhang H Z, Zhang W X, Hou S S et al. Recent research progress on surface-enhanced spectra of chiral molecules[J]. Scientia Sinica (Physica, 50, 48-69(2020).
[35] Zhang H Z, Zhang A Z, Hou S S et al. Superchiral fields generated by nanostructures and their applications for chiral sensing[J]. Chinese Physics B, 30, 113303(2021).
[36] Hendry E, Carpy T, Johnston J et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields[J]. Nature Nanotechnology, 5, 783-787(2010).
[37] Schäferling M, Dregely D, Hentschel M et al. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures[J]. Physical Review X, 2, 031010(2012).
[38] Meinzer N, Hendry E, Barnes W L. Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures[J]. Physical Review B, 88, 041407(2013).
[39] García-Etxarri A, Dionne J A. Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas[J]. Physical Review B, 87, 235409(2013).
[40] Cao H, Wiersig J. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics[J]. Reviews of Modern Physics, 87, 61-111(2015).
[41] García-Etxarri A, Gómez-Medina R, Froufe-Pérez L S et al. Strong magnetic response of submicron silicon particles in the infrared[J]. Optics Express, 19, 4815-4826(2011).
[42] Yao K, Liu Y M. Enhancing circular dichroism by chiral hotspots in silicon nanocube dimers[J]. Nanoscale, 10, 8779-8786(2018).
[43] Liu Y, Zhao W, Ji Y et al. Strong superchiral field in hot spots and its interaction with chiral molecules[J]. Europhysics Letters, 110, 17008(2015).
[44] Zhao X, Reinhard B M. Switchable chiroptical hot-spots in silicon nanodisk dimers[J]. ACS Photonics, 6, 1981-1989(2019).
[45] Alizadeh M H, Reinhard B M. Plasmonically enhanced chiral optical fields and forces in achiral split ring resonators[J]. ACS Photonics, 2, 361-368(2015).
[46] Wu T, Zhang W X, Zhang H Z et al. Vector exceptional points with strong superchiral fields[J]. Physical Review Letters, 124, 083901(2020).
[47] Yoo S, Cho M, Park Q H. Globally enhanced chiral field generation by negative-index metamaterials[J]. Physical Review B, 89, 161406(2014).
[48] Zhang H Z, Zhang W X, Chen S H et al. Experimental observation of vector bound states in the continuum[J]. Advanced Optical Materials, 11, 2203118(2023).
[49] Auguié B, Alonso-Gómez J L, Guerrero-Martínez A et al. Fingers crossed: optical activity of a chiral dimer of plasmonic nanorods[J]. The Journal of Physical Chemistry Letters, 2, 846-851(2011).
[50] Lieberman I, Shemer G, Fried T et al. Plasmon-resonance-enhanced absorption and circular dichroism[J]. Angewandte Chemie International Edition, 47, 4855-4857(2008).
[51] Layani M E, Ben M A, Varenik M et al. Chiroptical activity in silver cholate nanostructures induced by the formation of nanoparticle assemblies[J]. The Journal of Physical Chemistry C, 117, 22240-22244(2013).
[52] di Gregorio M C, Ben Moshe A, Tirosh E et al. Chiroptical study of plasmon-molecule interaction: the case of interaction of glutathione with silver nanocubes[J]. The Journal of Physical Chemistry C, 119, 17111-17116(2015).
[53] Govorov A O, Fan Z, Hernandez P et al. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects[J]. Nano letters, 10, 1374-82(2010).
[54] Brullot W, Vanbel M K, Swusten T et al. Resolving enantiomers using the optical angular momentum of twisted light[J]. Science Advances, 2, e1501349(2016).
[55] Levi-Belenkova T, Govorov A O, Markovich G. Orientation-sensitive peptide-induced plasmonic circular dichroism in silver nanocubes[J]. The Journal of Physical Chemistry C, 120, 12751-12756(2016).
[56] Luber S, Herrmann C, Reiher M. Relevance of the electric-dipole: electric-quadrupole contribution to Raman optical activity spectra[J]. The Journal of Physical Chemistry B, 112, 2218-2232(2008).
[57] Alexandrescu A, Cojoc D, di Fabrizio E. Mechanism of angular momentum exchange between molecules and Laguerre-Gaussian beams[J]. Physical Review Letters, 96, 243001(2006).
[58] Andrews D L, Romero L C D, Babiker M. On optical vortex interactions with chiral matter[J]. Optics Communications, 237, 133-139(2004).
[59] Babiker M, Bennett C R, Andrews D L et al. Orbital angular momentum exchange in the interaction of twisted light with molecules[J]. Physical Review Letters, 89, 143601(2002).
[60] Jáuregui R. Rotational effects of twisted light on atoms beyond the paraxial approximation[J]. Physical Review A, 70, 033415(2004).
[61] Mondal P K, Deb B, Majumder S. Angular momentum transfer in interaction of Laguerre-Gaussian beams with atoms and molecules[J]. Physical Review A, 89, 063418(2014).
[62] Romero L C D, Andrews D L, Babiker M. A quantum electrodynamics framework for the nonlinear optics of twisted beams[J]. Journal of Optics B: Quantum and Semiclassical Optics, 4, S66-S72(2002).
[63] Wu T, Wang R Y, Zhang X D. Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light[J]. Scientific Reports, 5, 18003(2015).
[64] Abdali S, Blanch E W. Surface enhanced Raman optical activity (SEROA)[J]. Chemical Society Reviews, 37, 980-992(2008).
[65] Efrima S. Raman optical activity of molecules adsorbed on metal surfaces: theory[J]. The Journal of Chemical Physics, 83, 1356-1362(1985).
[66] Zhang W X, Wu T, Wang R Y et al. Amplification of the molecular chiroptical effect by low-loss dielectric nanoantennas[J]. Nanoscale, 9, 5701-5707(2017).
[67] Bhardwaj A, Kaur J, Wuest M et al. In situ click chemistry generation of cyclooxygenase-2 inhibitors[J]. Nature Communications, 8, 1(2017).
[68] Kakkar T, Keijzer C, Rodier M et al. Superchiral near fields detect virus structure[J]. Light, Science & Applications, 9, 195(2020).
[69] Li J G, Wang M S, Wu Z L et al. Tunable chiral optics in all-solid-phase reconfigurable dielectric nanostructures[J]. Nano Letters, 21, 973-979(2021).
[70] Rodier M, Keijzer C, Milner J et al. Probing specificity of protein-protein interactions with chiral plasmonic nanostructures[J]. The Journal of Physical Chemistry Letters, 10, 6105-6111(2019).
[71] Tullius R, Karimullah A S, Rodier M et al. “superchiral”spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures[J]. Journal of the American Chemical Society, 137, 8380-8383(2015).
[72] Tullius R, Platt G W, Khorashad L K et al. Superchiral plasmonic phase sensitivity for fingerprinting of protein interface structure[J]. ACS Nano, 11, 12049-12056(2017).
[73] Zhang H, Govorov A O. Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals[J]. Physical Review B, 87, 075410(2013).
[74] Bradshaw D S, Andrews D L. Laser optical separation of chiral molecules[J]. Optics Letters, 40, 677-680(2015).
[75] Canaguier-Durand A, Hutchison J A, Genet C et al. Mechanical separation of chiral dipoles by chiral light[J]. New Journal of Physics, 15, 123037(2013).
[76] Hayat A, Mueller J P, Capasso F. Lateral chirality-sorting optical forces[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 13190-13194(2015).
[77] Pellegrini G, Finazzi M, Celebrano M et al. Superchiral Surface Waves for All-Optical Enantiomer Separation[J]. The Journal of Physical Chemistry C, 123, 28336-42(2019).
[78] Soltani M, Lin J, Forties R A et al. Nanophotonic trapping for precise manipulation of biomolecular arrays[J]. Nature Nanotechnology, 9, 448-452(2014).
[79] Tkachenko G, Brasselet E. Optofluidic sorting of material chirality by chiral light[J]. Nature Communications, 5, 3577(2014).
[80] Wang S B, Chan C T. Lateral optical force on chiral particles near a surface[J]. Nature Communications, 5, 3307(2014).
[81] Fang L, Wang J. Optical trapping separation of chiral nanoparticles by subwavelength slot waveguides[J]. Physical Review Letters, 127, 233902(2021).
[82] Shoji T, Tsuboi Y. Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping[J]. The Journal of Physical Chemistry Letters, 5, 2957-2967(2014).
[83] Hou S S, Liu Y, Zhang W X et al. Separating and trapping of chiral nanoparticles with dielectric photonic crystal slabs[J]. Optics Express, 29, 15177-15189(2021).
[84] Lin Z H, Zhang J W, Huang J S. Plasmonic elliptical nanoholes for chiroptical analysis and enantioselective optical trapping[J]. Nanoscale, 13, 9185-9192(2021).
[85] Zhao Y, Saleh A A E, Dionne J A. Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers[J]. ACS Photonics, 3, 304-309(2016).
[86] Fischer P, Hache F. Nonlinear optical spectroscopy of chiral molecules[J]. Chirality, 17, 421-437(2005).
[87] Giordmaine J A. Nonlinear optical properties of liquids[J]. Physical Review, 138, A1599-A1606(1965).
[88] Neufeld O, Tzur M E, Cohen O. Degree of chirality of electromagnetic fields and maximally chiral light[J]. Physical Review A, 101, 053831(2020).
[89] Zhao Y, Saleh A A, Dionne J A. Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers[J]. Acs Photonics, 3, 304-9(2016).
[90] Bloch E, Larroque S, Rozen S et al. Revealing the influence of molecular chirality on tunnel-ionization dynamics[J]. Physical Review X, 11, 041056(2021).
[91] Ayuso D. New opportunities for ultrafast and highly enantio-sensitive imaging of chiral nuclear dynamics enabled by synthetic chiral light[J]. Physical Chemistry Chemical Physics, 24, 10193-10200(2022).
[92] Ayuso D, Ordonez A, Ivanov M et al. Ultrafast optical rotation in chiral molecules with ultrashort and tightly focused beams[C], NW2A.2(2021).
[93] Král P, Shapiro M. Cyclic population transfer in quantum systems with broken symmetry[J]. Physical Review Letters, 87, 183002(2001).
[94] Leibscher M, Kalveram J, Koch C P. Rational pulse design for enantiomer-selective microwave three-wave mixing[J]. Symmetry, 14, 871(2022).
[95] Li Y, Bruder C. Dynamic method to distinguish between left- and right-handed chiral molecules[J]. Physical Review A, 77, 015403(2008).
[96] Liu B, Ye C, Sun C P et al. Enantiospecific state transfer for gaseous symmetric-top chiral molecules[J]. Physical Review A, 105, 043110(2022).
[97] Torosov B T, Drewsen M, Vitanov N V. Efficient and robust chiral resolution by composite pulses[J]. Physical Review A, 101, 063401(2020).
[98] Torosov B T, Michael D, Vitanov Nikolay V. Chiral resolution by composite Raman pulses[J]. Physical Review Research, 2, 043235(2020).
[99] Vitanov N V, Drewsen M. Highly efficient detection and separation of chiral molecules through shortcuts to adiabaticity[J]. Physical Review Letters, 122, 173202(2019).
[100] Wu J L, Wang Y, Han J X et al. Two-path interference for enantiomer-selective state transfer of chiral molecules[J]. Physical Review Applied, 13, 044021(2020).
[101] Wu J L, Wang Y, Song J et al. Robust and highly efficient discrimination of chiral molecules through three-mode parallel paths[J]. Physical Review A, 100, 043413(2019).
[102] Ye C, Zhang Q S, Chen Y Y et al. Effective two-level models for highly efficient inner-state enantioseparation based on cyclic three-level systems of chiral molecules[J]. Physical Review A, 100, 043403(2019).
[103] Li X, Shapiro M. Theory of the optical spatial separation of racemic mixtures of chiral molecules[J]. The Journal of Chemical Physics, 132, 194315(2010).
[104] Li Y, Bruder C, Sun C P. Generalized Stern-Gerlach effect for chiral molecules[J]. Physical Review Letters, 99, 130403(2007).
[105] Liu B, Ye C, Sun C P et al. Spatial enantioseparation of gaseous chiral molecules[J]. Physical Review A, 104, 013113(2021).
[106] Chen Y Y, Cheng J J, Ye C et al. Enantiodetection of cyclic three-level chiral molecules in a driven cavity[J]. Physical Review Research, 4, 013100(2022).
[107] Chen Y Y, Ye C, Li Y. Enantio-detection via cavity-assisted three-photon processes[J]. Optics Express, 29, 36132-36144(2021).
[108] Chen Y Y, Ye C, Zhang Q S et al. Enantio-discrimination via light deflection effect[J]. The Journal of Chemical Physics, 152, 204305(2020).
[109] Jia W Z, Wei L F. Probing molecular chirality by coherent optical absorption spectra[J]. Physical Review A, 84, 053849(2011).
[110] Kang Y H, Shi Z C, Song J et al. Effective discrimination of chiral molecules in a cavity[J]. Optics Letters, 45, 4952-4955(2020).
[111] Ye C, Zhang Q S, Chen Y Y et al. Determination of enantiomeric excess with chirality-dependent ac Stark effects in cyclic three-level models[J]. Physical Review A, 100, 033411(2019).
[112] Brumer P, Frishman E, Shapiro M. Principles of electric-dipole-allowed optical control of molecular chirality[J]. Physical Review A, 65, 015401(2001).
[113] Gerbasi D, Shapiro M, Brumer P. Theory of enantiomeric control in dimethylallene using achiral light[J]. The Journal of Chemical Physics, 115, 5349-5352(2001).
[114] Král P, Thanopulos I, Shapiro M et al. Two-step enantio-selective optical switch[J]. Physical Review Letters, 90, 033001(2003).
[115] Shapiro M, Frishman E, Brumer P. Coherently controlled asymmetric synthesis with achiral light[J]. Physical Review Letters, 84, 1669-1672(2000).
[116] Ye C, Liu B, Chen Y Y et al. Enantio-conversion of chiral mixtures via optical pumping[J]. Physical Review A, 103, 022830(2021).
[117] Ye C, Zhang Q S, Chen Y Y et al. Fast enantioconversion of chiral mixtures based on a four-level double-Δ model[J]. Physical Review Research, 2, 033064(2020).
[118] Hirota E. Triple resonance for a three-level system of a chiral molecule[J]. Proceedings of the Japan Academy: Series B, Physical and Biological Sciences, 88, 120-128(2012).
[119] Eibenberger S, Doyle J, Patterson D. Enantiomer-specific state transfer of chiral molecules[J]. Physical Review Letters, 118, 123002(2017).
[120] Lee J, Bischoff J, Hernandez-Castillo A O et al. Quantitative study of enantiomer-specific state transfer[J]. Physical Review Letters, 128, 173001(2022).
[121] Pérez C, Steber A L, Domingos S R et al. Coherent enantiomer-selective population enrichment using tailored microwave fields[J]. Angewandte Chemie (International Ed. in English), 56, 12512-12517(2017).
[122] Lobsiger S, Perez C, Evangelisti L et al. Molecular structure and chirality detection by Fourier transform microwave spectroscopy[J]. The Journal of Physical Chemistry Letters, 6, 196-200(2015).
[123] Patterson D, Doyle J M. Sensitive chiral analysis via microwave three-wave mixing[J]. Physical Review Letters, 111, 023008(2013).
[124] Patterson D, Schnell M. New studies on molecular chirality in the gas phase: enantiomer differentiation and determination of enantiomeric excess[J]. Physical Chemistry Chemical Physics: PCCP, 16, 11114-11123(2014).
[125] Patterson D, Schnell M, Doyle J M. Enantiomer-specific detection of chiral molecules via microwave spectroscopy[J]. Nature, 497, 475-477(2013).
[126] Shubert V A, Schmitz D, Medcraft C et al. Rotational spectroscopy and three-wave mixing of 4-carvomenthenol: a technical guide to measuring chirality in the microwave regime[J]. The Journal of Chemical Physics, 142, 214201(2015).
[127] Shubert V A, Schmitz D, Patterson D et al. Identifying enantiomers in mixtures of chiral molecules with broadband microwave spectroscopy[J]. Angewandte Chemie (International Ed. in English), 53, 1152-1155(2014).
[128] Shubert V A, Schmitz D, Pérez C et al. Chiral analysis using broadband rotational spectroscopy[J]. The Journal of Physical Chemistry Letters, 7, 341-350(2016).
[129] Sun W H, Tikhonov D S, Singh H et al. Inducing transient enantiomeric excess in a molecular quantum racemic mixture with microwave fields[J]. Nature Communications, 14, 934(2023).
Get Citation
Copy Citation Text
Xiaowei Mu, Chong Ye, Xiangdong Zhang. Chiral Light Field and Its Recent Research Progress in Molecular Chirality Detection (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026015
Category: Physical Optics
Received: Dec. 19, 2023
Accepted: Mar. 18, 2024
Published Online: May. 6, 2024
The Author Email: Ye Chong (yechong@bit.edu.cn), Zhang Xiangdong (zhangxd@bit.edu.cn)
CSTR:32393.14.AOS231950