Chinese Journal of Quantum Electronics, Volume. 42, Issue 4, 437(2025)
Quantum precision measurement based on optical lattice atomic clocks
[1] Essen L, Parry J V L. An atomic standard of frequency and time interval: A cæsium resonator[J]. Nature, 176, 280-282(1955).
[2] Mungall A G, Bailey R, Daams H. The Canadian cesium beam frequency standard[J]. Metrologia, 2, 98-104(1966).
[3] Heavner T P, Donley E A, Levi F et al. First accuracy evaluation of NIST-F2[J]. Metrologia, 51, 174-182(2014).
[4] Dehmelt H G. Monoion oscillator as potential ultimate laser frequency standard[J]. IEEE Transactions on Instrumentation and Measurement, 83-87(1982).
[5] Courtillot I, Quessada A, Kovacich R P et al. Clock transition for a future optical frequency standard with trapped atoms[J]. Physical Review A, 68, 030501(2003).
[6] Takamoto M, Hong F L, Higashi R et al. An optical lattice clock[J]. Nature, 435, 321-324(2005).
[7] Ludlow A D, Boyd M M, Zelevinsky T et al. Systematic study of the 87Sr clock transition in an optical lattice[J]. Physical Review Letters, 96, 033003(2006).
[8] Le Targat R, Baillard X, Fouché M et al. Accurate optical lattice clock with 87Sr atoms[J]. Physical Review Letters, 97, 130801(2006).
[9] Origlia S, Pramod M S, Schiller S et al. Towards an optical clock for space: Compact, high-performance optical lattice clock based on bosonic atoms[J]. Physical Review A, 98, 053443(2018).
[10] McGrew W F, Zhang X, Fasano R J et al. Atomic clock performance enabling geodesy below the centimetre level[J]. Nature, 564, 87-90(2018).
[11] Takamoto M, Ushijima I, Das M et al. Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications[J]. Comptes Rendus Physique, 16, 489-498(2015).
[12] Goti I, Condio S, Clivati C et al. Absolute frequency measurement of a Yb optical clock at the limit of the Cs fountain[J]. Metrologia, 60, 035002(2023).
[13] Luo L M, Qiao H, Ai D et al. Absolute frequency measurement of an Yb optical clock at the 10-16 level using International Atomic Time[J]. Metrologia, 57, 065017(2020).
[14] Kim H, Heo M S, Park C Y et al. Absolute frequency measurement of the 171Yb optical lattice clock at KRISS using TAI for over a year[J]. Metrologia, 58, 055007(2021).
[15] Zhang A, Xiong Z X, Chen X T et al. Ytterbium optical lattice clock with instability of order 10-18[J]. Metrologia, 59, 065009(2022).
[16] Poli N, Barber Z W, Lemke N D et al. Frequency evaluation of the doubly forbidden 1S0→3P0 transition in bosonic 174Yb[J]. Physical Review A, 77, 050501(2008).
[17] Yamanaka K, Ohmae N, Ushijima I et al. Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit[J]. Physical Review Letters, 114, 230801(2015).
[18] McFerran J J, Yi L, Mejri S et al. Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty=5.7 × 10-15[J]. Physical Review Letters, 108, 183004(2012).
[19] Tyumenev R, Favier M, Bilicki S et al. Comparing a mercury optical lattice clock with microwave and optical frequency standards[J]. New Journal of Physics, 18, 113002(2016).
[20] Golovizin A, Fedorova E, Tregubov D et al. Inner-shell clock transition in atomic thulium with a small blackbody radiation shift[J]. Nature Communications, 10, 1724(2019).
[21] Golovizin A A, Tregubov D O, Fedorova E S et al. Simultaneous bicolor interrogation in thulium optical clock providing very low systematic frequency shifts[J]. Nature Communications, 12, 5171(2021).
[22] Wu F F, Tang Y B, Shi T Y et al. Magic-intensity trapping of the Mg lattice clock with light shift suppressed below 10-19[J]. Physical Review A, 101, 053414(2020).
[23] Yamaguchi A, Safronova M S, Gibble K et al. Narrow-line cooling and determination of the magic wavelength of Cd[J]. Physical Review Letters, 123, 113201(2019).
[24] Wu L, Wang X, Wang T et al. Be optical lattice clocks with the fractional Stark shift up to the level of 10-19[J]. New Journal of Physics, 25, 043011(2023).
[25] Keller J, Ignatovich S, Webster S A et al. Simple vibration-insensitive cavity for laser stabilization at the 10-16 level[J]. Applied Physics B, 116, 203-210(2014).
[26] Matei D G, Legero T, Grebing C et al. A second generation of low thermal noise cryogenic silicon resonators[J]. Journal of Physics: Conference Series, 723, 012031(2016).
[27] Zhang W, Robinson J M, Sonderhouse L et al. Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K[J]. Physical Review Letters, 119, 243601(2017).
[28] Lemonde P, Wolf P. Optical lattice clock with atoms confined in a shallow trap[J]. Physical Review A, 72, 033409(2005).
[29] Bothwell T, Kennedy C J, Aeppli A et al. Resolving the gravitational redshift across a millimetre-scale atomic sample[J]. Nature, 602, 420-424(2022).
[30] Aeppli A, Chu A J, Bothwell T et al. Hamiltonian engineering of spin-orbit-coupled fermions in a Wannier-Stark optical lattice clock[J]. Science Advances, 8, eadc9242(2022).
[31] Oelker E, Hutson R B, Kennedy C J et al. Demonstration of 4.8×10-17 stability at 1 s for two independent optical clocks[J]. Nature Photonics, 13, 714-719(2019).
[32] Aeppli A, Kim K, Warfield W et al. Clock with 8×10-19 systematic uncertainty[J]. Physical Review Letters, 133, 023401(2024).
[33] Dimarcq N, Gertsvolf M, Mileti G et al. Roadmap towards the redefinition of the second[J]. Metrologia, 61, 012001(2024).
[34] Grotti J, Koller S, Vogt S et al. Geodesy and metrology with a transportable optical clock[J]. Nature Physics, 14, 437-441(2018).
[35] Grotti J, Nosske I, Koller S B et al. Long-distance chronometric leveling with a portable optical clock[J]. Physical Review Applied, 21, L061001(2024).
[36] Takano T, Takamoto M, Ushijima I et al. Geopotential measurements with synchronously linked optical lattice clocks[J]. Nature Photonics, 10, 662-666(2016).
[37] Schwarz R, Dörscher S, Al-Masoudi A et al. Long term measurement of the 87Sr clock frequency at the limit of primary Cs clocks[J]. Physical Review Research, 2, 033242(2020).
[38] Kolkowitz S, Pikovski I, Langellier N et al. Gravitational wave detection with optical lattice atomic clocks[J]. Physical Review D, 94, 124043(2016).
[39] Boulder Atomic Clock Optical Network Collaboration. Frequency ratio measurements at 18-digit accuracy using an optical clock network[J]. Nature, 591, 564-569(2021).
[40] Nakamura T, Davila-Rodriguez J, Leopardi H et al. Coherent optical clock down-conversion for microwave frequencies with 10-18 instability[J]. Science, 368, 889-892(2020).
[41] Takamoto M, Ushijima I, Ohmae N et al. Test of general relativity by a pair of transportable optical lattice clocks[J]. Nature Photonics, 14, 411-415(2020).
[42] Uzan J P. The fundamental constants and their variation: Observational and theoretical status[J]. Reviews of Modern Physics, 75, 403-455(2003).
[43] Schwarz J H. Superstring theory[J]. Physics Reports, 89, 223-322(1982).
[44] Bailint D, Love A. Kaluza-Klein theories[J]. Reports on Progress in Physics, 50, 1087-1170(1987).
[45] Yasuda M, Katori H. Lifetime measurement of the 3P2 metastable state of strontium atoms[J]. Physical Review Letters, 92, 153004(2004).
[46] Dörscher S, Schwarz R, Al-Masoudi A et al. Lattice-induced photon scattering in an optical lattice clock[J]. Physical Review A, 97, 063419(2018).
[47] Hettrich M, Ruster T, Kaufmann H et al. Measurement of dipole matrix elements with a single trapped ion[J]. Physical Review Letters, 115, 143003(2015).
[48] Lu X T, Guo F, Liu Y Y et al. Determining the lifetime of the 5s5p3P0o metastable state in 87Sr from the electric dipole matrix element[J]. Physical Review Applied, 21, 024042(2024).
[49] Lu X T, Guo F, Wang Y B et al. MF-dependent hyperfine-induced 5s5p3P0o–5s21S0 clock transition rates in an external magnetic field for 87Sr[J]. Physical Review A, 108, 012820(2023).
[50] Westergaard P G, Lodewyck J, Lorini L et al. Lattice-induced frequency shifts in Sr optical lattice clocks at the 10-17 level[J]. Physical Review Letters, 106, 210801(2011).
[51] Lu X T, Zhou C H, Li T et al. Synchronous frequency comparison beyond the Dick limit based on dual-excitation spectrum in an optical lattice clock[J]. Applied Physics Letters, 117, 231101(2020).
[52] Blatt S, Thomsen J W, Campbell G K et al. Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock[J]. Physical Review A, 80, 052703(2009).
[53] Boyd M M, Zelevinsky T, Ludlow A D et al. Nuclear spin effects in optical lattice clocks[J]. Physical Review A, 76, 022510(2007).
[54] Lu B Q, Wang Y B, Guo Y et al. Experimental determination of the Landé g-factors for 5s21S and 5s5p3P states of the 87Sr atom[J]. Chinese Physics Letters, 35, 043203(2018).
[55] Zhou Y H, Zhang X F, Wang T. Density shift of optical lattice clocks via the multiband sampling exact diagonalization method[J]. Physical Review A, 108, 033304(2023).
[56] Martin M J, Bishof M, Swallows M D et al. A quantum many-body spin system in an optical lattice clock[J]. Science, 341, 632-636(2013).
[57] Zhang X, Bishof M, Bromley S L et al. Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism[J]. Science, 345, 1467-1473(2014).
[58] Goban A, Hutson R B, Marti G E et al. Emergence of multi-body interactions in a Fermionic lattice clock[J]. Nature, 563, 369-373(2018).
[59] Xiao S X, Liang Y, Zhang Y et al. Gravity measurement at the sub-millimeter scale with optical lattice clock[J]. Applied Physics Letters, 124, 094002(2024).
[60] Middelmann T, Lisdat C, Falke S et al. Tackling the blackbody shift in a strontium optical lattice clock[J]. IEEE Transactions on Instrumentation and Measurement, 60, 2550-2557(2011).
[61] Ushijima I, Takamoto M, Das M et al. Cryogenic optical lattice clocks[J]. Nature Photonics, 9, 185-189(2015).
[62] Kim K, Aeppli A, Bothwell T et al. Evaluation of lattice light shift at low 10-19 uncertainty for a shallow lattice Sr optical clock[J]. Physical Review Letters, 130, 113203(2023).
[63] Yu J L, Häfner S, Legero T et al. Excess noise and photoinduced effects in highly reflective crystalline mirror coatings[J]. Physical Review X, 13, 041002(2023).
[64] Kedar D, Yu J L, Oelker E et al. Frequency stability of cryogenic silicon cavities with semiconductor crystalline coatings[J]. Optica, 10, 464-470(2023).
[65] Safronova M S, Porsev S G, Sanner C et al. Two clock transitions in neutral Yb for the highest sensitivity to variations of the fine-structure constant[J]. Physical Review Letters, 120, 173001(2018).
[66] Lange R, Huntemann N, Rahm J M et al. Improved limits for violations of local position invariance from atomic clock comparisons[J]. Physical Review Letters, 126, 011102(2021).
Get Citation
Copy Citation Text
Xiaotong LU, Hong CHANG. Quantum precision measurement based on optical lattice atomic clocks[J]. Chinese Journal of Quantum Electronics, 2025, 42(4): 437
Category: Special Issue on...
Received: Dec. 24, 2024
Accepted: --
Published Online: Jul. 31, 2025
The Author Email: Hong CHANG (changhong@ntsc.ac.cn)