Journal of Inorganic Materials, Volume. 35, Issue 7, 769(2020)
[10] LI L X, TAO J, GENG X et al. Preparation and supercapacitor performance of nitrogen-doped carbon nanotubes from polyaniline modification[J]. Acta Phys-Chim. Sin, 29, 924-929(2013).
[12] SUBRAMANIAN V, ZHU H, VAJTAI R et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures[J]. J. Physi. Chem. B, 109, 20207-20214(2005).
[37] LIAO C, ZUO Y, WEI Z et al. Russ. Electrochemical performance of metal-organic framework synthesized by a solvothermal method for supercapacitors[J]. J. Electrochem, 49, 983-986(2013).
[38] XU J, CHAO Y, XUE Y et al. Facile synthesis of novel metal-organic nickel hydroxide nanorods for high performance supercapacitor[J]. Electrochim. Acta, 211, 595-602(2016).
[39] YANG J, XIONG P, ZHENG C et al. Metal-organic frameworks: a new promising class of material for high performances supercapacitor electrode[J]. J. Mater. Chem. A, 2, 16640-16644(2014).
[40] KANG L, SUN S X, KONG L B et al. Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors[J]. Chinese Chem. Lett, 25, 957-961(2014).
[41] QU C, JIAO Y, ZHAO B et al. Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study[J]. Nano Energy, 26, 66-73(2016).
[43] KANNANGARA Y Y, RATHNAYAKE U A, SONG J K. Redox active multi-layered Zn-pPDA MOFs as high-performance supercapacitor electrode material[J]. Electrochim. Acta, 297, 145-154(2019).
[45] YANG J, ZHENG C, XIONG P et al. Zn-doped Ni-MOF material with a high supercapacitive performance[J]. J. Mater. Chem. A, 2, 19005-19010(2014).
[46] DÍAZ R, ORCAJO M G, BOTAS J A et al. Co8-MOF-5 as electrode for supercapacitors[J]. Mater. Lett, 68, 126-128(2012).
[47] GAO W, CHEN D, QUAN H et al. Fabrication of hierarchical porous metal-organic framework electrode for aqueous asymmetric supercapacitor[J]. ACS Sustain. Chem. Eng, 5, 4144-4153(2017).
[50] WANG K, WANG Z, XIN W et al. Flexible long-chain-linker constructed Ni-based metal-organic frameworks with 1D helical channel and their pseudo-capacitor behavior studies[J]. J. Power Sources, 377, 44-51(2018).
[51] SALUNKHE R R, KANETI Y V, KIM J et al. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications[J]. Accounts Chem. Res, 49, 2796-2806(2016).
[53] YANG J, GANG C, CHEN D et al. Bimetal-organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage[J]. J. Mater. Chem. A, 5, 23744-23752(2017).
[54] WANG Z, GAO C, LIU Y et al. Electrochemical performance and transformation of Co-MOF/reduced graphene oxide composite[J]. Mater. Lett, 193, 216(2017).
[55] BENNETT T D, CHEETHAM A K. Amorphous metal-organic frameworks[J]. Accounts Chem. Res, 47, 1555-1562(2014).
[56] YANG F, LI W, TANG B J. Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application[J]. Joarnal of Alloys & Compounds, 733, 8-14(2018).
[58] LAN Y, LI Z, YU C et al. Application of zeolitic imidazolate framework in supercapacitor[J]. New Chem. Mater, 45, 8-10(2017).
[60] LI Z, JIANG Y, WANG Z et al. Nitrogen-rich core-shell structured particles consisting of carbonized zeolitic imidazolate frameworks and reduced graphene oxide for amperometric determination of hydrogen peroxide[J]. Microchim. Acta, 185, 501(2018).
[61] LI Z, LAN Y, CAO H et al. Carbon materials derived from chitosan/ cellulose cryogel-supported zeolite imidazole frameworks for potential supercapacitor application[J]. Carbohyd. Polym, 175, 223-230(2017).
[62] LI Z, HE H, CAO H et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis[J]. Appl. Catal. B: Environ, 240, 112-121(2019).
Get Citation
Copy Citation Text
Zehui LI, Meijuan TAN, Yuanhao ZHENG, Yuyang LUO, Qiushi JING, Jingkun JIANG, Mingjie LI.
Category: REVIEW
Received: Aug. 16, 2019
Accepted: --
Published Online: Mar. 3, 2021
The Author Email: Mingjie LI (limj@qibebt.ac.cn)