Optics and Precision Engineering, Volume. 31, Issue 24, 3595(2023)
Trajectory tracking and obstacle avoidance of a redundant robotic manipulator based on the improved grey wolf optimizer
[1] OMISORE O M, HAN S P, XIONG J et al. A review on flexible robotic systems for minimally invasive surgery[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52, 631-644(2022).
[2] DING X L, WANG Y C, WANG Y B et al. A review of structures, verification, and calibration technologies of space robotic systems for on-orbit servicing[J]. Science China Technological Sciences, 64, 462-480(2021).
[3] [3] 王文瑞, 刘克俭, 顾金麟, 等. 有关节约束超冗余机械臂的增益优化轨迹规划[J]. 光学 精密工程, 2019, 27(5): 1075-1086. doi: 10.3788/ope.20192705.1075WANGW R, LIUK J, GUJ L, et al. Gain-optimization trajectory planning method for hyper-redundant manipulator with joint constraints[J]. Opt. Precision Eng., 2019, 27(5): 1075-1086.(in Chinese). doi: 10.3788/ope.20192705.1075
[4] KHAN A H, LI S, LUO X. Obstacle avoidance and tracking control of redundant robotic manipulator: an RNN-based metaheuristic approach[J]. IEEE Transactions on Industrial Informatics, 16, 4670-4680(2020).
[5] GUO D S, LI A F, CAI J H et al. Inverse kinematics of redundant manipulators with guaranteed performance[J]. Robotica, 40, 170-190(2022).
[6] LOPEZ-FRANCO C, DIAZ D, HERNANDEZ-BARRAGAN J et al. A metaheuristic optimization approach for trajectory tracking of robot manipulators[J]. Mathematics, 10, 1051(2022).
[7] ROKBANI N, MIRJALILI S, SLIM M et al. A beta salp swarm algorithm meta-heuristic for inverse kinematics and optimization[J]. Applied Intelligence, 52, 10493-10518(2022).
[8] [8] 姜力, 周扬, 孙奎, 等. 七自由度冗余机械臂避障控制[J]. 光学 精密工程, 2013, 21(7): 1795-1802. doi: 10.3788/ope.20132107.1795JIANGL, ZHOUY, SUNK, et al. Obstacle avoidance control for 7-DOF redundant manipulators[J]. Opt. Precision Eng., 2013, 21(7): 1795-1802. (in Chinese). doi: 10.3788/ope.20132107.1795
[9] AGARWAL D, BHARTI P S. Implementing modified swarm intelligence algorithm based on Slime moulds for path planning and obstacle avoidance problem in mobile robots[J]. Applied Soft Computing, 107, 107372(2021).
[10] ZHANG J X, ZHANG J X, ZHANG Q et al. Obstacle avoidance path planning of space robot based on improved particle swarm optimization[J]. Symmetry, 14, 938(2022).
[11] [11] 常宁东, 冯春, 程鹏达, 等. 基于Bekker理论改进遗传算法的野外路径优化方法研究[J]. 光学 精密工程, 2023, 31(5): 767-775. doi: 10.37188/OPE.20233105.0767CHANGN D, FENGC, CHENGP D, et al. Research on off-road path optimization algorithm based on Bekker theory improved genetic algorithm[J]. Opt. Precision Eng., 2023, 31(5): 767-775.(in Chinese). doi: 10.37188/OPE.20233105.0767
[12] CAMERON S. Enhancing GJK: computing minimum and penetration distances between convex polyhedra[C], 3112-3117(25).
[13] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 69, 46-61(2014).
[14] CUI J K, LIU T Y, ZHU M C et al. Improved team learning-based grey wolf optimizer for optimization tasks and engineering problems[J]. The Journal of Supercomputing, 79, 10864-10914(2023).
[15] CHEN P, PEI J, LU W et al. A deep reinforcement learning based method for real-time path planning and dynamic obstacle avoidance[J]. Neurocomputing, 497, 64-75(2022).
[16] DEB K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 186, 311-338(2000).
Get Citation
Copy Citation Text
Jingkai CUI, Yufei ZHOU, Shunfeng HE, Zhenbang XU, Mingchao ZHU. Trajectory tracking and obstacle avoidance of a redundant robotic manipulator based on the improved grey wolf optimizer[J]. Optics and Precision Engineering, 2023, 31(24): 3595
Category:
Received: May. 9, 2023
Accepted: --
Published Online: Jan. 5, 2024
The Author Email: Mingchao ZHU (mingchaozhu@gmail.com)