Laser Technology, Volume. 46, Issue 3, 355(2022)

Hyperspectral image classification based on hybrid convolutional neural network

LIU Cuilian1,2, TAO Yuxiang1,2、*, LUO Xiaobo1,2, and LI Qingyan1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(21)

    [1] [1] LI X, DING M L, PIURICA A. Deep feature fusion via two-stream convolutional neural network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2615-2629.

    [2] [2] GUO H, LIU J, XIAO Z, et al. Deep CNN-based hyperspectral image classification using discriminative multiple spatial-spectral feature fusion[J]. Remote Sensing Letters, 2020, 11(9): 827-836.

    [3] [3] ZHAO W Zh, DU Sh H. Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4544-4554.

    [4] [4] CHEN Y Sh, LIN Zh H, ZHAO X, et al. Deep learning-based classification of hyperspectral data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote, 2014, 7(6): 2094-2107.

    [5] [5] LIU P, CHOO K K R, WANG L, et al. SVM or deep learning? A comparative study on remote sensing image classification [J]. Soft Computing, 2017, 21(23): 7053-7065.

    [6] [6] ZHONG P, GONG Zh Q, LI Sh T, et al. Learning to diversify deep belief networks for hyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3516-3530.

    [7] [7] ZHANG M M, LI W, DU Q. Diverse region-based CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2623-2634.

    [8] [8] XU Y H, ZHANG L P, DU B, et al. Spectral-spatial unified networks for hyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5893-5909.

    [9] [9] PAOLETTI M E, HAUT J M, FERNANDEZ-BELTRAN R, et al. Capsule networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 2145-2160.

    [10] [10] ZHANG H K, LI Y, ZHANG Y Zh, et al. Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network[J]. Remote Sensing Letters, 2017, 8(5): 438-447.

    [11] [11] ZHONG Z L, LI J, LUO Zh M, et al. Spectral-spatial residual network for hyperspectral image classification: A 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 847-858.

    [12] [12] LI J Y, LIANG B X, WANG Y H. A hybrid neural network for hyperspectral image classification[J]. Remote Sensing Letters, 2020, 11(1): 96-105.

    [13] [13] LI W, WU G D, ZHANG F, et al. Hyperspectral image classification using deep pixel-pair features [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 844-853.

    [14] [14] CHEN Y Sh, JIANG H L, LI Ch Y, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232-6251.

    [15] [15] ROY S K, KRISHNA G, DUBEY S R, et al. HybridSN: Exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2): 277-281.

    [16] [16] GUAN Sh H, YANG G, LI H, et al. Hyperspectral image classification based on 3-D convolutional recurrent neural network[J].Laser Technology, 2020, 44(4): 485-491(in Chinese).

    [17] [17] LI Y, ZHANG H K, SHEN Q. Spectral-spatial classification of hyperspectral imagery with 3-D convolutional neural network [J]. Remote Sensing, 2017, 9(1), 67.

    [18] [18] MAKANTASIS K, KARANTZALOS K, DOULAMIS A, et al. Deep supervised learning for hyperspectral data classification through convolutional neural networks[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). New York, USA: IEEE, 2015: 4959-4962.

    [19] [19] HANG R L, LI Zh, GHAMISI P, et al. Classification of hyperspectral and LiDAR data using coupled CNNs [J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4939-4950.

    [20] [20] HE M Y, LI B, CHEN H H. Multi-scale 3-D deep convolutional neural network for hyperspectral image classification [C]// 2017 IEEE International Conference on Image Processing (ICIP). New York, USA: IEEE, 2017: 3904-3908.

    [21] [21] MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790.

    CLP Journals

    [1] PAN Lilin, SHAO Jianfei. Multi-resolution point cloud completion fusing graph attention[J]. Laser Technology, 2023, 47(5): 700

    Tools

    Get Citation

    Copy Citation Text

    LIU Cuilian, TAO Yuxiang, LUO Xiaobo, LI Qingyan. Hyperspectral image classification based on hybrid convolutional neural network[J]. Laser Technology, 2022, 46(3): 355

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 14, 2021

    Accepted: --

    Published Online: Jun. 14, 2022

    The Author Email: TAO Yuxiang (taoyx@cqupt.edu.cn)

    DOI:10.7510/jgjs.issn.1001-3806.2022.03.009

    Topics