Chinese Journal of Lasers, Volume. 49, Issue 3, 0310002(2022)
Blood Glucose Sensor Based on Parity-Time Symmetry Coupled Cavities
[1] Bouzidi A, Bria D, Falyouni F et al. A biosensor based on one-dimensional photonic crystal for monitoring blood glycemia[J]. Journal of Materials and Environmental Sciences, 8, 3892-3896(2017).
[2] Areed N F F, Hameed M F O, Obayya S S A. Highly sensitive face-shaped label-free photonic crystal refractometer for glucose concentration monitoring[J]. Optical and Quantum Electronics, 49, 1-12(2016).
[3] Elsayed H A, Mehaney A. A new method for glucose detection using the one dimensional defective photonic crystals[J]. Materials Research Express, 6, 036201(2018).
[4] Mohamed M S, Hameed M F O, Areed N F et al. Analysis of highly sensitive photonic crystal biosensor for glucose monitoring[J]. ACES Journal, 31, 836-842(2016).
[5] Yeh Y L. Real-time measurement of glucose concentration and average refractive index using a laser interferometer[J]. Optics and Lasers in Engineering, 46, 666-670(2008).
[6] Özdemir Ș K, Rotter S, Nori F et al. Parity-time symmetry and exceptional points in photonics[J]. Nature Materials, 18, 783-798(2019).
[7] Sone K, Ashida Y, Sagawa T. Exceptional non-Hermitian topological edge mode and its application to active matter[J]. Nature Communications, 11, 5745(2020).
[8] Hassani Gangaraj S A, Monticone F. Topological waveguiding near an exceptional point: defect-immune, slow-light, and loss-immune propagation[J]. Physical Review Letters, 121, 093901(2018).
[9] Zhao H, Qiao X D, Wu T W et al. Non-Hermitian topological light steering[J]. Science, 365, 1163-1166(2019).
[10] Qi B K, Chen H Z, Ge L et al. Parity-time symmetry synthetic lasers: physics and devices[J]. Advanced Optical Materials, 7, 1900694(2019).
[11] Hodaei H, Hassan A U, Wittek S et al. Enhanced sensitivity at higher-order exceptional points[J]. Nature, 548, 187-191(2017).
[12] Chong Y D, Ge L, Stone A D. PT-symmetry breaking and laser-absorber modes in optical scattering systems[J]. Physical Review Letters, 106, 093902(2011).
[13] Ge L, Chong Y D, Stone A D. Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures[J]. Physical Review A, 85, 023802(2012).
[14] Chang L, Jiang X S, Hua S Y et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators[J]. Nature Photonics, 8, 524-529(2014).
[15] Wong Z J, Xu Y L, Kim J et al. Lasing and anti-lasing in a single cavity[J]. Nature Photonics, 10, 796-801(2016).
[16] Assawaworrarit S, Yu X F, Fan S H. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit[J]. Nature, 546, 387-390(2017).
[17] Zhang Y C, Jiang X M, Xia J et al. Tunable high sensitivity temperature sensor based on transmittance changes of parity-time symmetry structure[J]. Chinese Journal of Lasers, 45, 0710002(2018).
[18] Wang Y Y, Xia J, Fang Y T. Unique non-reciprocal mode with a parity-time symmetric structure under magneto-optic effects[J]. Chinese Journal of Lasers, 45, 1213001(2018).
[19] Fang Y T, Li X X, Xia J et al. Sensing gases by the pole effect of parity-time symmetric coupled resonators[J]. IEEE Sensors Journal, 19, 2533-2539(2019).
Get Citation
Copy Citation Text
Sifang Ye, Yuntuan Fang. Blood Glucose Sensor Based on Parity-Time Symmetry Coupled Cavities[J]. Chinese Journal of Lasers, 2022, 49(3): 0310002
Received: Apr. 20, 2021
Accepted: Jun. 18, 2021
Published Online: Jan. 18, 2022
The Author Email: Fang Yuntuan (fang_yt1965@sina.com)